原位透射电镜揭示了C3N5薄片厚度相关的热分解机制。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zhongzhi Xie, Jiawei Huang, Peng Yang, Guangren Wang, Jiaqi Chen, Zhouyang Zhang and Linfeng Fei*, 
{"title":"原位透射电镜揭示了C3N5薄片厚度相关的热分解机制。","authors":"Zhongzhi Xie,&nbsp;Jiawei Huang,&nbsp;Peng Yang,&nbsp;Guangren Wang,&nbsp;Jiaqi Chen,&nbsp;Zhouyang Zhang and Linfeng Fei*,&nbsp;","doi":"10.1021/acs.langmuir.5c01987","DOIUrl":null,"url":null,"abstract":"<p >C<sub>3</sub>N<sub>5</sub> materials have received wide interest due to their enormous potential in optoelectronic and catalytic applications; however, their thermal instability under high-temperature conditions remains a critical challenge preceding practical implementations. In this context, the microscopic understanding of their structural decomposition mechanisms at high temperatures is imperative. In this work, we systematically investigate the thermal decomposition behaviors of C<sub>3</sub>N<sub>5</sub> flakes via in situ transmission electron microscopy. Our atomic-scale observations reveal thickness-dependent thermal decomposition mechanisms for C<sub>3</sub>N<sub>5</sub> flakes; these thin C<sub>3</sub>N<sub>5</sub> flakes initially decompose to form small amorphous carbon nanoparticles (NPs), which subsequently grow and crystallize, while thick C<sub>3</sub>N<sub>5</sub> flakes only precipitate amorphous carbon NPs on their surface and largely maintain their original structure under the same heating conditions. These two decomposition behaviors can be attributed to discrepancies in atomic bonding and particle diffusion according to the thickness of the C<sub>3</sub>N<sub>5</sub> flakes. The findings provide fundamental insights into the thermal stability of C<sub>3</sub>N<sub>5</sub> flakes and may offer indispensable guidance for designing stable C<sub>3</sub>N<sub>5</sub>-based materials.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 26","pages":"17247–17254"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Transmission Electron Microscopy Reveals the Thickness-Dependent Thermal Decomposition Mechanisms of C3N5 Flakes\",\"authors\":\"Zhongzhi Xie,&nbsp;Jiawei Huang,&nbsp;Peng Yang,&nbsp;Guangren Wang,&nbsp;Jiaqi Chen,&nbsp;Zhouyang Zhang and Linfeng Fei*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.5c01987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >C<sub>3</sub>N<sub>5</sub> materials have received wide interest due to their enormous potential in optoelectronic and catalytic applications; however, their thermal instability under high-temperature conditions remains a critical challenge preceding practical implementations. In this context, the microscopic understanding of their structural decomposition mechanisms at high temperatures is imperative. In this work, we systematically investigate the thermal decomposition behaviors of C<sub>3</sub>N<sub>5</sub> flakes via in situ transmission electron microscopy. Our atomic-scale observations reveal thickness-dependent thermal decomposition mechanisms for C<sub>3</sub>N<sub>5</sub> flakes; these thin C<sub>3</sub>N<sub>5</sub> flakes initially decompose to form small amorphous carbon nanoparticles (NPs), which subsequently grow and crystallize, while thick C<sub>3</sub>N<sub>5</sub> flakes only precipitate amorphous carbon NPs on their surface and largely maintain their original structure under the same heating conditions. These two decomposition behaviors can be attributed to discrepancies in atomic bonding and particle diffusion according to the thickness of the C<sub>3</sub>N<sub>5</sub> flakes. The findings provide fundamental insights into the thermal stability of C<sub>3</sub>N<sub>5</sub> flakes and may offer indispensable guidance for designing stable C<sub>3</sub>N<sub>5</sub>-based materials.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 26\",\"pages\":\"17247–17254\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c01987\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c01987","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

C3N5材料因其在光电和催化应用方面的巨大潜力而受到广泛关注;然而,它们在高温条件下的热不稳定性仍然是实际应用之前的一个关键挑战。在这种情况下,在高温下对其结构分解机制的微观理解是必要的。在这项工作中,我们系统地研究了C3N5薄片的热分解行为。我们的原子尺度观测揭示了C3N5薄片的厚度依赖性热分解机制;这些C3N5薄片最初分解形成小的非晶碳纳米颗粒(NPs),随后生长结晶,而在相同的加热条件下,C3N5薄片只在其表面析出非晶碳纳米颗粒,并在很大程度上保持其原始结构。这两种分解行为可归因于C3N5薄片厚度不同导致的原子键合和颗粒扩散的差异。这些发现为C3N5薄片的热稳定性提供了基本的见解,并可能为设计稳定的C3N5基材料提供不可或缺的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Transmission Electron Microscopy Reveals the Thickness-Dependent Thermal Decomposition Mechanisms of C3N5 Flakes

In Situ Transmission Electron Microscopy Reveals the Thickness-Dependent Thermal Decomposition Mechanisms of C3N5 Flakes

C3N5 materials have received wide interest due to their enormous potential in optoelectronic and catalytic applications; however, their thermal instability under high-temperature conditions remains a critical challenge preceding practical implementations. In this context, the microscopic understanding of their structural decomposition mechanisms at high temperatures is imperative. In this work, we systematically investigate the thermal decomposition behaviors of C3N5 flakes via in situ transmission electron microscopy. Our atomic-scale observations reveal thickness-dependent thermal decomposition mechanisms for C3N5 flakes; these thin C3N5 flakes initially decompose to form small amorphous carbon nanoparticles (NPs), which subsequently grow and crystallize, while thick C3N5 flakes only precipitate amorphous carbon NPs on their surface and largely maintain their original structure under the same heating conditions. These two decomposition behaviors can be attributed to discrepancies in atomic bonding and particle diffusion according to the thickness of the C3N5 flakes. The findings provide fundamental insights into the thermal stability of C3N5 flakes and may offer indispensable guidance for designing stable C3N5-based materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信