金属-有机骨架中有机磷的结合热力学:氧化态、刘易斯酸度和节点结构之间的相互作用。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kira M. Fahy, Bang Hou, Palak Garg, Seryeong Lee, Courtney S. Smoljan, Mohammad K. Shehab, Kent O. Kirlikovali and Omar K. Farha*, 
{"title":"金属-有机骨架中有机磷的结合热力学:氧化态、刘易斯酸度和节点结构之间的相互作用。","authors":"Kira M. Fahy,&nbsp;Bang Hou,&nbsp;Palak Garg,&nbsp;Seryeong Lee,&nbsp;Courtney S. Smoljan,&nbsp;Mohammad K. Shehab,&nbsp;Kent O. Kirlikovali and Omar K. Farha*,&nbsp;","doi":"10.1021/acsami.5c06791","DOIUrl":null,"url":null,"abstract":"<p >Organophosphorus compounds, including nerve agents and pesticides, represent a class of toxic chemicals causing harm to troops, civilians, and the environment. Metal–organic frameworks (MOFs) have emerged as a class of highly porous, crystalline, tunable materials adept at both capturing and catalytically neutralizing these harmful toxins. In particular, MOFs whose nodes display strong Lewis acidic character can hydrolyze such chemicals nearly instantaneously. However, without the help of a basic buffer to regenerate the active site, the benign organophosphorus product strongly binds to the node and prevents catalyst turnover. Here, we investigate a series of MOFs whose nodes contain metals of varying Lewis acidities and employ isothermal titration calorimetry (ITC) to directly measure the heat from the binding of an organophosphorus probe molecule, allowing the construction of a full thermodynamic binding profile (Δ<i>H</i>, Δ<i>S</i>, Δ<i>G</i>, <i>K</i><sub>a</sub>). We couple this with potentiometric titrations and solid state <sup>31</sup>P magic angle spinning (MAS) NMR to gain a clearer picture of how node identity, structure, and Lewis acidity interplay to impact binding strength and favorability. This study is the first to integrate these three complementary techniques to investigate binding interactions in MOFs, further showcasing the viability of ITC for probing MOF systems, which is still relatively underexplored.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 27","pages":"39642–39651"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organophosphorus Binding Thermodynamics in Metal–Organic Frameworks: Interplay between Oxidation State, Lewis Acidity, and Node Structure\",\"authors\":\"Kira M. Fahy,&nbsp;Bang Hou,&nbsp;Palak Garg,&nbsp;Seryeong Lee,&nbsp;Courtney S. Smoljan,&nbsp;Mohammad K. Shehab,&nbsp;Kent O. Kirlikovali and Omar K. Farha*,&nbsp;\",\"doi\":\"10.1021/acsami.5c06791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organophosphorus compounds, including nerve agents and pesticides, represent a class of toxic chemicals causing harm to troops, civilians, and the environment. Metal–organic frameworks (MOFs) have emerged as a class of highly porous, crystalline, tunable materials adept at both capturing and catalytically neutralizing these harmful toxins. In particular, MOFs whose nodes display strong Lewis acidic character can hydrolyze such chemicals nearly instantaneously. However, without the help of a basic buffer to regenerate the active site, the benign organophosphorus product strongly binds to the node and prevents catalyst turnover. Here, we investigate a series of MOFs whose nodes contain metals of varying Lewis acidities and employ isothermal titration calorimetry (ITC) to directly measure the heat from the binding of an organophosphorus probe molecule, allowing the construction of a full thermodynamic binding profile (Δ<i>H</i>, Δ<i>S</i>, Δ<i>G</i>, <i>K</i><sub>a</sub>). We couple this with potentiometric titrations and solid state <sup>31</sup>P magic angle spinning (MAS) NMR to gain a clearer picture of how node identity, structure, and Lewis acidity interplay to impact binding strength and favorability. This study is the first to integrate these three complementary techniques to investigate binding interactions in MOFs, further showcasing the viability of ITC for probing MOF systems, which is still relatively underexplored.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 27\",\"pages\":\"39642–39651\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c06791\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c06791","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机磷化合物,包括神经毒剂和杀虫剂,是一类对部队、平民和环境造成伤害的有毒化学物质。金属有机框架(mof)已经成为一类高多孔、结晶、可调的材料,擅长捕获和催化中和这些有害毒素。特别是,节点具有强刘易斯酸性特征的mof几乎可以在瞬间水解这些化学物质。然而,如果没有碱性缓冲液的帮助来再生活性位点,良性有机磷产物就会强烈地结合在节点上,阻止催化剂的周转。在这里,我们研究了一系列mof,其节点包含不同刘易斯酸的金属,并采用等温滴定量热法(ITC)直接测量有机磷探针分子结合产生的热量,从而构建了完整的热力学结合谱(ΔH, ΔS, ΔG, Ka)。我们将其与电位滴定和固态31P魔幻角旋转(MAS) NMR相结合,以更清楚地了解节点身份,结构和刘易斯酸度如何相互作用以影响结合强度和亲和性。这项研究首次整合了这三种互补的技术来研究MOF中的结合相互作用,进一步展示了ITC探测MOF系统的可行性,这方面的研究仍相对不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Organophosphorus Binding Thermodynamics in Metal–Organic Frameworks: Interplay between Oxidation State, Lewis Acidity, and Node Structure

Organophosphorus Binding Thermodynamics in Metal–Organic Frameworks: Interplay between Oxidation State, Lewis Acidity, and Node Structure

Organophosphorus compounds, including nerve agents and pesticides, represent a class of toxic chemicals causing harm to troops, civilians, and the environment. Metal–organic frameworks (MOFs) have emerged as a class of highly porous, crystalline, tunable materials adept at both capturing and catalytically neutralizing these harmful toxins. In particular, MOFs whose nodes display strong Lewis acidic character can hydrolyze such chemicals nearly instantaneously. However, without the help of a basic buffer to regenerate the active site, the benign organophosphorus product strongly binds to the node and prevents catalyst turnover. Here, we investigate a series of MOFs whose nodes contain metals of varying Lewis acidities and employ isothermal titration calorimetry (ITC) to directly measure the heat from the binding of an organophosphorus probe molecule, allowing the construction of a full thermodynamic binding profile (ΔH, ΔS, ΔG, Ka). We couple this with potentiometric titrations and solid state 31P magic angle spinning (MAS) NMR to gain a clearer picture of how node identity, structure, and Lewis acidity interplay to impact binding strength and favorability. This study is the first to integrate these three complementary techniques to investigate binding interactions in MOFs, further showcasing the viability of ITC for probing MOF systems, which is still relatively underexplored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信