{"title":"内皮细胞衍生的CX3CR1+祖细胞在心脏发生过程中产生心血管细胞。","authors":"Kyuwon Cho,Mark Andrade,S Khodayari Khodayari,Christine Lee,Seongho Bae,Sangsung Kim,Jin Eyun Kim,Young-Sup Yoon","doi":"10.1038/s44318-025-00488-z","DOIUrl":null,"url":null,"abstract":"CX3CR1+ cells generate tissue macrophages in the developing heart and play cardioprotective roles in response to ischemic injuries in the adult heart. However, the origin and fate of CX3CR1+ cells during cardiogenesis remain unclear. Here, we performed genetic lineage tracing of CX3CR1+ cells and their progeny (termed Cx3cr1 lineage cells) in the mouse and demonstrated that they emerge from a subset of epiblast cells at embryonic day E6.5 and contribute to the parietal endoderm cells at E7.0. At E8.0-9.5 of development, Cx3cr1 lineage cells produced cardiomyocytes and endothelial cells via both de novo differentiation and fusion with pre-existing cardiomyocytes or endothelial cells, respectively. Cx3cr1 lineage cells persisted in the adult heart, comprising ~13% of cardiomyocytes and ~31% of endothelial cells. Additionally, CX3CR1+ cells differentiated from mouse embryonic stem cells generated cardiomyocytes, endothelial cells, and macrophages in vitro, ex vivo, and in vivo. Single-cell RNA sequencing revealed that Cx3cr1+ cells represent an intermediate cell population transitioning from embryonic stem cells to mesoderm. Taken together, embryonic CX3CR1+ cells constitute a multipotent epiblast-derived progenitor population that contributes not only to the formation of macrophages, but also of cardiomyocytes and endothelial cells.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epiblast-derived CX3CR1+ progenitors generate cardiovascular cells during cardiogenesis.\",\"authors\":\"Kyuwon Cho,Mark Andrade,S Khodayari Khodayari,Christine Lee,Seongho Bae,Sangsung Kim,Jin Eyun Kim,Young-Sup Yoon\",\"doi\":\"10.1038/s44318-025-00488-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CX3CR1+ cells generate tissue macrophages in the developing heart and play cardioprotective roles in response to ischemic injuries in the adult heart. However, the origin and fate of CX3CR1+ cells during cardiogenesis remain unclear. Here, we performed genetic lineage tracing of CX3CR1+ cells and their progeny (termed Cx3cr1 lineage cells) in the mouse and demonstrated that they emerge from a subset of epiblast cells at embryonic day E6.5 and contribute to the parietal endoderm cells at E7.0. At E8.0-9.5 of development, Cx3cr1 lineage cells produced cardiomyocytes and endothelial cells via both de novo differentiation and fusion with pre-existing cardiomyocytes or endothelial cells, respectively. Cx3cr1 lineage cells persisted in the adult heart, comprising ~13% of cardiomyocytes and ~31% of endothelial cells. Additionally, CX3CR1+ cells differentiated from mouse embryonic stem cells generated cardiomyocytes, endothelial cells, and macrophages in vitro, ex vivo, and in vivo. Single-cell RNA sequencing revealed that Cx3cr1+ cells represent an intermediate cell population transitioning from embryonic stem cells to mesoderm. Taken together, embryonic CX3CR1+ cells constitute a multipotent epiblast-derived progenitor population that contributes not only to the formation of macrophages, but also of cardiomyocytes and endothelial cells.\",\"PeriodicalId\":501009,\"journal\":{\"name\":\"The EMBO Journal\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EMBO Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00488-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-025-00488-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Epiblast-derived CX3CR1+ progenitors generate cardiovascular cells during cardiogenesis.
CX3CR1+ cells generate tissue macrophages in the developing heart and play cardioprotective roles in response to ischemic injuries in the adult heart. However, the origin and fate of CX3CR1+ cells during cardiogenesis remain unclear. Here, we performed genetic lineage tracing of CX3CR1+ cells and their progeny (termed Cx3cr1 lineage cells) in the mouse and demonstrated that they emerge from a subset of epiblast cells at embryonic day E6.5 and contribute to the parietal endoderm cells at E7.0. At E8.0-9.5 of development, Cx3cr1 lineage cells produced cardiomyocytes and endothelial cells via both de novo differentiation and fusion with pre-existing cardiomyocytes or endothelial cells, respectively. Cx3cr1 lineage cells persisted in the adult heart, comprising ~13% of cardiomyocytes and ~31% of endothelial cells. Additionally, CX3CR1+ cells differentiated from mouse embryonic stem cells generated cardiomyocytes, endothelial cells, and macrophages in vitro, ex vivo, and in vivo. Single-cell RNA sequencing revealed that Cx3cr1+ cells represent an intermediate cell population transitioning from embryonic stem cells to mesoderm. Taken together, embryonic CX3CR1+ cells constitute a multipotent epiblast-derived progenitor population that contributes not only to the formation of macrophages, but also of cardiomyocytes and endothelial cells.