Nisha Bhattarai, Lindsay Morrison, Alexandre F Gomes, Paul Savage, Amita R Sahoo, Matthias Buck
{"title":"计算模型通过动态变构变化预测Rho-GTPase结合丛蛋白受体GAP活性在Rap1b上的功能。","authors":"Nisha Bhattarai, Lindsay Morrison, Alexandre F Gomes, Paul Savage, Amita R Sahoo, Matthias Buck","doi":"10.1002/pro.70196","DOIUrl":null,"url":null,"abstract":"<p><p>Plexin-semaphorin signaling regulates key processes such as cell migration, neuronal development, angiogenesis, and immune responses. Plexins stand out because they can directly bind with both Rho- and Ras-family small GTPases through their intracellular domains when these GTPases are in their active, GTP-bound states. This binding occurs via intracellular regions, which include a Rho-GTPase binding domain and a GTPase-activating protein (GAP) segment. Studies have shown that Rho and Ras GTPases play vital roles in plexin signaling and activation. However, the structural dynamics of plexins and GTPases and how these conformational changes affect interactions when plexin is bound with both Ras and Rho-GTPases or bound to only one specific GTPase have remained unclear. In this study, we conducted molecular dynamics simulations on six distinct plexin-GTPase bound systems to investigate the differences in conformations and dynamics between plexin-B1 and three GTPases: Rap1b, Rnd1, and Rac1. Our analysis revealed that dynamics with Rac1 are more altered compared to Rnd1, depending on whether plexin's GAP domain is bound or unbound to Rap1b. In addition, we further investigated alterations in network centralities and compared the network dynamics of the plexin-GTPase complexes, focusing on the differences when plexin is bound to both Ras (Rap1b) and Rho-GTPases (Rnd1/Rac1) versus when it is bound to only one GTPase. Our study revealed that Rnd1 exhibits stronger and more stable interactions with plexin-B1 in the absence of Rap1b, while Rac1 shows fewer and less stable connections in comparison. These computational models have features that broadly agree with experimental results from hydrogen-deuterium exchange detected by mass spectrometry. Such insights provide a better understanding of the molecular mechanisms underlying plexin-GTPase interactions and the complexities of signaling mechanisms involving GTPases in general.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 7","pages":"e70196"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183121/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational model predicts function of Rho-GTPase binding for plexin receptor GAP activity on Rap1b via dynamic allosteric changes.\",\"authors\":\"Nisha Bhattarai, Lindsay Morrison, Alexandre F Gomes, Paul Savage, Amita R Sahoo, Matthias Buck\",\"doi\":\"10.1002/pro.70196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plexin-semaphorin signaling regulates key processes such as cell migration, neuronal development, angiogenesis, and immune responses. Plexins stand out because they can directly bind with both Rho- and Ras-family small GTPases through their intracellular domains when these GTPases are in their active, GTP-bound states. This binding occurs via intracellular regions, which include a Rho-GTPase binding domain and a GTPase-activating protein (GAP) segment. Studies have shown that Rho and Ras GTPases play vital roles in plexin signaling and activation. However, the structural dynamics of plexins and GTPases and how these conformational changes affect interactions when plexin is bound with both Ras and Rho-GTPases or bound to only one specific GTPase have remained unclear. In this study, we conducted molecular dynamics simulations on six distinct plexin-GTPase bound systems to investigate the differences in conformations and dynamics between plexin-B1 and three GTPases: Rap1b, Rnd1, and Rac1. Our analysis revealed that dynamics with Rac1 are more altered compared to Rnd1, depending on whether plexin's GAP domain is bound or unbound to Rap1b. In addition, we further investigated alterations in network centralities and compared the network dynamics of the plexin-GTPase complexes, focusing on the differences when plexin is bound to both Ras (Rap1b) and Rho-GTPases (Rnd1/Rac1) versus when it is bound to only one GTPase. Our study revealed that Rnd1 exhibits stronger and more stable interactions with plexin-B1 in the absence of Rap1b, while Rac1 shows fewer and less stable connections in comparison. These computational models have features that broadly agree with experimental results from hydrogen-deuterium exchange detected by mass spectrometry. Such insights provide a better understanding of the molecular mechanisms underlying plexin-GTPase interactions and the complexities of signaling mechanisms involving GTPases in general.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 7\",\"pages\":\"e70196\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183121/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70196\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70196","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Computational model predicts function of Rho-GTPase binding for plexin receptor GAP activity on Rap1b via dynamic allosteric changes.
Plexin-semaphorin signaling regulates key processes such as cell migration, neuronal development, angiogenesis, and immune responses. Plexins stand out because they can directly bind with both Rho- and Ras-family small GTPases through their intracellular domains when these GTPases are in their active, GTP-bound states. This binding occurs via intracellular regions, which include a Rho-GTPase binding domain and a GTPase-activating protein (GAP) segment. Studies have shown that Rho and Ras GTPases play vital roles in plexin signaling and activation. However, the structural dynamics of plexins and GTPases and how these conformational changes affect interactions when plexin is bound with both Ras and Rho-GTPases or bound to only one specific GTPase have remained unclear. In this study, we conducted molecular dynamics simulations on six distinct plexin-GTPase bound systems to investigate the differences in conformations and dynamics between plexin-B1 and three GTPases: Rap1b, Rnd1, and Rac1. Our analysis revealed that dynamics with Rac1 are more altered compared to Rnd1, depending on whether plexin's GAP domain is bound or unbound to Rap1b. In addition, we further investigated alterations in network centralities and compared the network dynamics of the plexin-GTPase complexes, focusing on the differences when plexin is bound to both Ras (Rap1b) and Rho-GTPases (Rnd1/Rac1) versus when it is bound to only one GTPase. Our study revealed that Rnd1 exhibits stronger and more stable interactions with plexin-B1 in the absence of Rap1b, while Rac1 shows fewer and less stable connections in comparison. These computational models have features that broadly agree with experimental results from hydrogen-deuterium exchange detected by mass spectrometry. Such insights provide a better understanding of the molecular mechanisms underlying plexin-GTPase interactions and the complexities of signaling mechanisms involving GTPases in general.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).