{"title":"一种新型的,廉价的,适应性强的系统,用于同时测量双壳类动物的瓣膜运动和心脏活动。","authors":"James E Vereycken, David C Aldridge","doi":"10.1080/09593330.2025.2518275","DOIUrl":null,"url":null,"abstract":"<p><p>Guarding aquatic resources from degradation is vital. Organismal behavioural biomonitoring enables facile broad-spectrum toxicity detection, with distinct strengths over traditional water-quality sensing. Bivalve molluscs make ideal biomonitors, using alterations within two behaviours, valve movements and cardiac activity. Commercial systems monitoring these are costly, and often inflexible, whilst published methods typically lack broad suitability or requisite detail, or necessitate expertise; widespread application can be hindered, especially in the Global South and remote locations, despite the benefits for water monitoring. Furthermore, integration of both behaviours in systems is uncommon, despite probable gains in informativeness and sensitivity. Therefore, in the current work, a novel prototype set-up to simultaneously monitor valve movements and cardiac activity in multiple specimens was designed, constructed, and demonstrated. Employing popular, sophisticated, and robust technological approaches, the system caters for many bivalves (sessile/mobile, freshwater/marine). Reproducible, inexpensive, and uncomplicated, the low-power system centres around a Raspberry Pi (3B+) microcontroller, compatible with manifold open-source software. Monitoring eight unfixed animals for approximately £200 (during 2020), the system is adaptable for specimen numbers, type/rate of data capture, and operational conditions/environment. It is also scalable; miniaturisation and economies of scale should reduce the size and cost of a single set-up, making wider deployment of multiple systems, and larger cohorts, increasingly feasible. In providing extensive detail, the current work encourages further application of such monitoring capability. Widespread deployment or biomonitoring networks could revolutionise water management, improving protection of aquatic ecosystems and human health. Such ecological understanding aids bivalve conservation, of particular benefit to declining freshwater species.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-17"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel, inexpensive, and adaptable system for the simultaneous measurement of valve movements and cardiac activity in bivalves.\",\"authors\":\"James E Vereycken, David C Aldridge\",\"doi\":\"10.1080/09593330.2025.2518275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Guarding aquatic resources from degradation is vital. Organismal behavioural biomonitoring enables facile broad-spectrum toxicity detection, with distinct strengths over traditional water-quality sensing. Bivalve molluscs make ideal biomonitors, using alterations within two behaviours, valve movements and cardiac activity. Commercial systems monitoring these are costly, and often inflexible, whilst published methods typically lack broad suitability or requisite detail, or necessitate expertise; widespread application can be hindered, especially in the Global South and remote locations, despite the benefits for water monitoring. Furthermore, integration of both behaviours in systems is uncommon, despite probable gains in informativeness and sensitivity. Therefore, in the current work, a novel prototype set-up to simultaneously monitor valve movements and cardiac activity in multiple specimens was designed, constructed, and demonstrated. Employing popular, sophisticated, and robust technological approaches, the system caters for many bivalves (sessile/mobile, freshwater/marine). Reproducible, inexpensive, and uncomplicated, the low-power system centres around a Raspberry Pi (3B+) microcontroller, compatible with manifold open-source software. Monitoring eight unfixed animals for approximately £200 (during 2020), the system is adaptable for specimen numbers, type/rate of data capture, and operational conditions/environment. It is also scalable; miniaturisation and economies of scale should reduce the size and cost of a single set-up, making wider deployment of multiple systems, and larger cohorts, increasingly feasible. In providing extensive detail, the current work encourages further application of such monitoring capability. Widespread deployment or biomonitoring networks could revolutionise water management, improving protection of aquatic ecosystems and human health. Such ecological understanding aids bivalve conservation, of particular benefit to declining freshwater species.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2518275\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2518275","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A novel, inexpensive, and adaptable system for the simultaneous measurement of valve movements and cardiac activity in bivalves.
Guarding aquatic resources from degradation is vital. Organismal behavioural biomonitoring enables facile broad-spectrum toxicity detection, with distinct strengths over traditional water-quality sensing. Bivalve molluscs make ideal biomonitors, using alterations within two behaviours, valve movements and cardiac activity. Commercial systems monitoring these are costly, and often inflexible, whilst published methods typically lack broad suitability or requisite detail, or necessitate expertise; widespread application can be hindered, especially in the Global South and remote locations, despite the benefits for water monitoring. Furthermore, integration of both behaviours in systems is uncommon, despite probable gains in informativeness and sensitivity. Therefore, in the current work, a novel prototype set-up to simultaneously monitor valve movements and cardiac activity in multiple specimens was designed, constructed, and demonstrated. Employing popular, sophisticated, and robust technological approaches, the system caters for many bivalves (sessile/mobile, freshwater/marine). Reproducible, inexpensive, and uncomplicated, the low-power system centres around a Raspberry Pi (3B+) microcontroller, compatible with manifold open-source software. Monitoring eight unfixed animals for approximately £200 (during 2020), the system is adaptable for specimen numbers, type/rate of data capture, and operational conditions/environment. It is also scalable; miniaturisation and economies of scale should reduce the size and cost of a single set-up, making wider deployment of multiple systems, and larger cohorts, increasingly feasible. In providing extensive detail, the current work encourages further application of such monitoring capability. Widespread deployment or biomonitoring networks could revolutionise water management, improving protection of aquatic ecosystems and human health. Such ecological understanding aids bivalve conservation, of particular benefit to declining freshwater species.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current