一种基于极简记忆库计算系统的心电信号分类方法。

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-06-18 DOI:10.1007/s11571-025-10295-1
Xiaoyuan Wang, Meng Yang, Yuji Zeng, Zhuosheng Lin, Herbert H C Iu
{"title":"一种基于极简记忆库计算系统的心电信号分类方法。","authors":"Xiaoyuan Wang, Meng Yang, Yuji Zeng, Zhuosheng Lin, Herbert H C Iu","doi":"10.1007/s11571-025-10295-1","DOIUrl":null,"url":null,"abstract":"<p><p>The advantage of reservoir computing (RC) is that only the connection weight between reservoir layer and output layer needs to be trained, and the rest of the connection weights are randomly generated and fixed, which is especially suitable for time series data processing. However, the hardware implementation of high-dimensional random connection of neurons in reservoir layer is still a challenge. The memristors are emerging components with unique nonlinear and memory characteristics. Particularly, memristors allow nonlinear mapping of input time series into high-dimensional feature space, which meets the requirements of the reservoir layer. The reservoir layers of current memristor-based RC systems are based on the dynamics of volatile memristors. In this paper, a non-volatile memristor-based reservoir layer is designed for constructing RC system, in which the voltages across the two memristors are utilized to calculate the reservoir states. In this design, one-dimensional voltage input signal can be easily nonlinearly mapped to a two-dimensional space, which significantly simplifies the complexity of data analysis and enhances the separability of signal features, satisfying the requirement of RC for the high-dimensional feature. The experimental results of the proposed RC system for electrocardiogram (ECG) signal classification task achieve high accuracies of 98.3% and 100% for QRS complexes with and without shift, respectively, which validates the effectiveness of the proposed RC system.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"97"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176724/pdf/","citationCount":"0","resultStr":"{\"title\":\"An effective ECG signal classification method based on a minimalistic memristive reservoir computing system.\",\"authors\":\"Xiaoyuan Wang, Meng Yang, Yuji Zeng, Zhuosheng Lin, Herbert H C Iu\",\"doi\":\"10.1007/s11571-025-10295-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advantage of reservoir computing (RC) is that only the connection weight between reservoir layer and output layer needs to be trained, and the rest of the connection weights are randomly generated and fixed, which is especially suitable for time series data processing. However, the hardware implementation of high-dimensional random connection of neurons in reservoir layer is still a challenge. The memristors are emerging components with unique nonlinear and memory characteristics. Particularly, memristors allow nonlinear mapping of input time series into high-dimensional feature space, which meets the requirements of the reservoir layer. The reservoir layers of current memristor-based RC systems are based on the dynamics of volatile memristors. In this paper, a non-volatile memristor-based reservoir layer is designed for constructing RC system, in which the voltages across the two memristors are utilized to calculate the reservoir states. In this design, one-dimensional voltage input signal can be easily nonlinearly mapped to a two-dimensional space, which significantly simplifies the complexity of data analysis and enhances the separability of signal features, satisfying the requirement of RC for the high-dimensional feature. The experimental results of the proposed RC system for electrocardiogram (ECG) signal classification task achieve high accuracies of 98.3% and 100% for QRS complexes with and without shift, respectively, which validates the effectiveness of the proposed RC system.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"97\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176724/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10295-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10295-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

储层计算(RC)的优点是只需要训练储层与输出层之间的连接权值,其余的连接权值是随机生成和固定的,特别适合于时间序列数据的处理。然而,水库层神经元的高维随机连接的硬件实现仍然是一个挑战。忆阻器是一种具有独特非线性和记忆特性的新兴器件。特别是,忆阻器允许将输入时间序列非线性映射到高维特征空间,这满足了储层的要求。当前基于忆阻器的RC系统的储层是基于易失性忆阻器的动力学。本文设计了一种基于非易失性忆阻器的储层来构建RC系统,利用两个忆阻器之间的电压来计算储层的状态。在本设计中,一维电压输入信号可以很容易地非线性映射到二维空间,大大简化了数据分析的复杂性,增强了信号特征的可分性,满足了RC对高维特征的要求。实验结果表明,该系统对有移位和无移位QRS复合体的心电图信号分类准确率分别达到98.3%和100%,验证了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective ECG signal classification method based on a minimalistic memristive reservoir computing system.

The advantage of reservoir computing (RC) is that only the connection weight between reservoir layer and output layer needs to be trained, and the rest of the connection weights are randomly generated and fixed, which is especially suitable for time series data processing. However, the hardware implementation of high-dimensional random connection of neurons in reservoir layer is still a challenge. The memristors are emerging components with unique nonlinear and memory characteristics. Particularly, memristors allow nonlinear mapping of input time series into high-dimensional feature space, which meets the requirements of the reservoir layer. The reservoir layers of current memristor-based RC systems are based on the dynamics of volatile memristors. In this paper, a non-volatile memristor-based reservoir layer is designed for constructing RC system, in which the voltages across the two memristors are utilized to calculate the reservoir states. In this design, one-dimensional voltage input signal can be easily nonlinearly mapped to a two-dimensional space, which significantly simplifies the complexity of data analysis and enhances the separability of signal features, satisfying the requirement of RC for the high-dimensional feature. The experimental results of the proposed RC system for electrocardiogram (ECG) signal classification task achieve high accuracies of 98.3% and 100% for QRS complexes with and without shift, respectively, which validates the effectiveness of the proposed RC system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信