液体诱导晶格畸变的激光合成PtFeSn/活性炭增强甲基环己烷脱氢。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zheng Wang, Hossein Akhoundzadeh, Mudi Wu, Mingwu Tan, Yizhong Huang, Rong Xu
{"title":"液体诱导晶格畸变的激光合成PtFeSn/活性炭增强甲基环己烷脱氢。","authors":"Zheng Wang, Hossein Akhoundzadeh, Mudi Wu, Mingwu Tan, Yizhong Huang, Rong Xu","doi":"10.1002/smtd.202500474","DOIUrl":null,"url":null,"abstract":"<p><p>Methylcyclohexane (MCH) has emerged as one of the most promising liquid organic hydrogen carriers (LOHCs) for H<sub>2</sub> storage and long-distance transportation. Developing efficient, selective, and stable catalysts for MCH dehydrogenation is essential to make the process viable for practical applications. In this study, a platinum-iron-tin alloy supported on activated carbon (PtFeSn/AC) is reported, prepared via laser synthesis in liquid (LSL), exhibiting excellent dehydrogenation performance. The rapid crystallization and quenching inherent to the LSL process kinetically trap lattice distortions in the PtFeSn/AC catalyst due to atomic radius mismatches among Pt, Fe, and Sn. These distortions generate strain effects that create a local unsaturated coordination environment and downshift the d-band center of the catalyst, thereby enhancing the exposure of active sites and facilitating the desorption of toluene (TOL). As a result, the PtFeSn/AC catalyst demonstrates exceptional dehydrogenation performance, achieving a hydrogen evolution rate of 2625 mmol g<sub>Pt</sub> <sup>-1</sup> min<sup>-1</sup> under a weight hourly space velocity (WHSV) of 27.7 h<sup>-1</sup>. Notably, the catalyst exhibits remarkable stability, with only a 3.2% drop in conversion after 193 h of continuous reaction. Additionally, TOL selectivity remains extraordinarily high at 99.96%. This work provides critical insights into the design of high-performance catalysts via non-conventional synthesis methods for practical applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500474"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser Synthesis in Liquid Induced Lattice Distortion in PtFeSn/Activated Carbon for Enhanced Methylcyclohexane Dehydrogenation.\",\"authors\":\"Zheng Wang, Hossein Akhoundzadeh, Mudi Wu, Mingwu Tan, Yizhong Huang, Rong Xu\",\"doi\":\"10.1002/smtd.202500474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methylcyclohexane (MCH) has emerged as one of the most promising liquid organic hydrogen carriers (LOHCs) for H<sub>2</sub> storage and long-distance transportation. Developing efficient, selective, and stable catalysts for MCH dehydrogenation is essential to make the process viable for practical applications. In this study, a platinum-iron-tin alloy supported on activated carbon (PtFeSn/AC) is reported, prepared via laser synthesis in liquid (LSL), exhibiting excellent dehydrogenation performance. The rapid crystallization and quenching inherent to the LSL process kinetically trap lattice distortions in the PtFeSn/AC catalyst due to atomic radius mismatches among Pt, Fe, and Sn. These distortions generate strain effects that create a local unsaturated coordination environment and downshift the d-band center of the catalyst, thereby enhancing the exposure of active sites and facilitating the desorption of toluene (TOL). As a result, the PtFeSn/AC catalyst demonstrates exceptional dehydrogenation performance, achieving a hydrogen evolution rate of 2625 mmol g<sub>Pt</sub> <sup>-1</sup> min<sup>-1</sup> under a weight hourly space velocity (WHSV) of 27.7 h<sup>-1</sup>. Notably, the catalyst exhibits remarkable stability, with only a 3.2% drop in conversion after 193 h of continuous reaction. Additionally, TOL selectivity remains extraordinarily high at 99.96%. This work provides critical insights into the design of high-performance catalysts via non-conventional synthesis methods for practical applications.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500474\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500474\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500474","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

甲基环己烷(Methylcyclohexane, MCH)是一种极具应用前景的液态有机氢载体(lohc)。开发高效、选择性和稳定的MCH脱氢催化剂是实现该工艺实际应用的关键。在本研究中,采用激光液体合成(LSL)法制备了一种负载在活性炭上的铂铁锡合金(PtFeSn/AC),具有优异的脱氢性能。由于Pt、Fe和Sn之间的原子半径不匹配,LSL过程固有的快速结晶和淬火动态捕获了PtFeSn/AC催化剂中晶格畸变。这些变形产生应变效应,产生局部不饱和配位环境,降低催化剂的d带中心,从而增加活性位点的暴露,促进甲苯的解吸(TOL)。结果表明,PtFeSn/AC催化剂表现出优异的脱氢性能,在27.7 h-1的重量小时空速(WHSV)下,析氢速率达到2625 mmol gPt -1 min-1。值得注意的是,催化剂表现出了良好的稳定性,连续反应193 h后转化率仅下降3.2%。此外,TOL选择性仍然非常高,达到99.96%。这项工作为通过非常规合成方法设计高性能催化剂的实际应用提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser Synthesis in Liquid Induced Lattice Distortion in PtFeSn/Activated Carbon for Enhanced Methylcyclohexane Dehydrogenation.

Methylcyclohexane (MCH) has emerged as one of the most promising liquid organic hydrogen carriers (LOHCs) for H2 storage and long-distance transportation. Developing efficient, selective, and stable catalysts for MCH dehydrogenation is essential to make the process viable for practical applications. In this study, a platinum-iron-tin alloy supported on activated carbon (PtFeSn/AC) is reported, prepared via laser synthesis in liquid (LSL), exhibiting excellent dehydrogenation performance. The rapid crystallization and quenching inherent to the LSL process kinetically trap lattice distortions in the PtFeSn/AC catalyst due to atomic radius mismatches among Pt, Fe, and Sn. These distortions generate strain effects that create a local unsaturated coordination environment and downshift the d-band center of the catalyst, thereby enhancing the exposure of active sites and facilitating the desorption of toluene (TOL). As a result, the PtFeSn/AC catalyst demonstrates exceptional dehydrogenation performance, achieving a hydrogen evolution rate of 2625 mmol gPt -1 min-1 under a weight hourly space velocity (WHSV) of 27.7 h-1. Notably, the catalyst exhibits remarkable stability, with only a 3.2% drop in conversion after 193 h of continuous reaction. Additionally, TOL selectivity remains extraordinarily high at 99.96%. This work provides critical insights into the design of high-performance catalysts via non-conventional synthesis methods for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信