染料木素分泌驱动空间根系分配和异种微生物群落促进大豆-玉米间作磷吸收

IF 6 1区 生物学 Q1 PLANT SCIENCES
Bingbing Zhang, Huadong Jiang, Guitian Zheng, Zeyu Zhang, Tianqi Wang, Qianqian Chen, Xiaoyuan Chen, Xing Lu, Cuiyue Liang, Jiang Tian
{"title":"染料木素分泌驱动空间根系分配和异种微生物群落促进大豆-玉米间作磷吸收","authors":"Bingbing Zhang, Huadong Jiang, Guitian Zheng, Zeyu Zhang, Tianqi Wang, Qianqian Chen, Xiaoyuan Chen, Xing Lu, Cuiyue Liang, Jiang Tian","doi":"10.1111/pce.70020","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean-maize intercropping improves phosphate (Pi) acquisition in phosphorus (P) deficient soils through flavonoid-mediated plant-microbe interactions. Yet, the molecular mechanisms driving spatially heterogeneous root-microbe interactions mediated by secreted flavonoids remain unexplored. Using GmHAD1-2 suppression line (Ri) and wild-type (WT), we demonstrated that root-secreted flavonoids, particularly genistein, drive spatial differentiation of root allocation and rhizosphere microbial communities in intercropped soybean with maize, specifically under low-P conditions. Compared to WT, Ri reduced genistein secretion and restricted root allocation to the root non-interaction zone, thereby diminishing the intercropping advantage by less shoot biomass and P uptake. In all cropping systems, WT in intercropping recruited Bacillus in root non-interaction zones, while Pseudomonas in root interaction zones. Furthermore, inoculation experiments demonstrated their synergistic roles. Bacillus stimulated root elongation and enhanced transcription of auxin-responsive genes (i.e., GmPIN2b and GmYUC2a), whereas Pseudomonas elevated Pi availability in rhizosphere soils and upregulated Pi transporters (i.e., GmPHF1 and GmPT4). Taken together, spatial root allocation and heterogeneous microbial communities across root zones play a critical role in determining intercropping advantages, which is regulated by genistein exudation in soybean roots. Our study provides novel insights into root exudate-driven microbial zonation as a strategic adaptation to nutrient stress, with implications for optimising sustainable intercropping systems.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genistein Exudation Drives Spatial Root Allocation and Heterogeneous Microbial Communities to Enhance Phosphorus Acquisition in Soybean-Maize Intercropping.\",\"authors\":\"Bingbing Zhang, Huadong Jiang, Guitian Zheng, Zeyu Zhang, Tianqi Wang, Qianqian Chen, Xiaoyuan Chen, Xing Lu, Cuiyue Liang, Jiang Tian\",\"doi\":\"10.1111/pce.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soybean-maize intercropping improves phosphate (Pi) acquisition in phosphorus (P) deficient soils through flavonoid-mediated plant-microbe interactions. Yet, the molecular mechanisms driving spatially heterogeneous root-microbe interactions mediated by secreted flavonoids remain unexplored. Using GmHAD1-2 suppression line (Ri) and wild-type (WT), we demonstrated that root-secreted flavonoids, particularly genistein, drive spatial differentiation of root allocation and rhizosphere microbial communities in intercropped soybean with maize, specifically under low-P conditions. Compared to WT, Ri reduced genistein secretion and restricted root allocation to the root non-interaction zone, thereby diminishing the intercropping advantage by less shoot biomass and P uptake. In all cropping systems, WT in intercropping recruited Bacillus in root non-interaction zones, while Pseudomonas in root interaction zones. Furthermore, inoculation experiments demonstrated their synergistic roles. Bacillus stimulated root elongation and enhanced transcription of auxin-responsive genes (i.e., GmPIN2b and GmYUC2a), whereas Pseudomonas elevated Pi availability in rhizosphere soils and upregulated Pi transporters (i.e., GmPHF1 and GmPT4). Taken together, spatial root allocation and heterogeneous microbial communities across root zones play a critical role in determining intercropping advantages, which is regulated by genistein exudation in soybean roots. Our study provides novel insights into root exudate-driven microbial zonation as a strategic adaptation to nutrient stress, with implications for optimising sustainable intercropping systems.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70020\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70020","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大豆-玉米间作通过黄酮类化合物介导的植物-微生物相互作用改善磷(P)缺乏土壤中磷(Pi)的获取。然而,由分泌的类黄酮介导的驱动空间异质性根微生物相互作用的分子机制仍未被探索。利用GmHAD1-2抑制系(Ri)和野生型(WT),研究人员发现,在低磷条件下,大豆与玉米间作根系分泌的黄酮类化合物,尤其是染料木素,驱动了根系分配和根际微生物群落的空间分化。与WT相比,Ri减少了染料木素分泌,限制了根系分配到根系非互作区,从而减少了地上部生物量和磷素吸收,从而削弱了间作优势。在所有种植制度中,间作WT在根系非互作区吸收芽孢杆菌,在根系互作区吸收假单胞菌。接种试验进一步证实了它们的协同作用。芽孢杆菌刺激了根伸长,增强了生长素响应基因(即GmPIN2b和GmYUC2a)的转录,而假单胞菌提高了根际土壤中Pi的有效性,上调了Pi转运蛋白(即GmPHF1和GmPT4)。综上所述,大豆根系中染料木素的分泌对间作优势的决定起着至关重要的作用。我们的研究为根系分泌物驱动的微生物带化提供了新的见解,作为对营养胁迫的战略适应,对优化可持续间作系统具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genistein Exudation Drives Spatial Root Allocation and Heterogeneous Microbial Communities to Enhance Phosphorus Acquisition in Soybean-Maize Intercropping.

Soybean-maize intercropping improves phosphate (Pi) acquisition in phosphorus (P) deficient soils through flavonoid-mediated plant-microbe interactions. Yet, the molecular mechanisms driving spatially heterogeneous root-microbe interactions mediated by secreted flavonoids remain unexplored. Using GmHAD1-2 suppression line (Ri) and wild-type (WT), we demonstrated that root-secreted flavonoids, particularly genistein, drive spatial differentiation of root allocation and rhizosphere microbial communities in intercropped soybean with maize, specifically under low-P conditions. Compared to WT, Ri reduced genistein secretion and restricted root allocation to the root non-interaction zone, thereby diminishing the intercropping advantage by less shoot biomass and P uptake. In all cropping systems, WT in intercropping recruited Bacillus in root non-interaction zones, while Pseudomonas in root interaction zones. Furthermore, inoculation experiments demonstrated their synergistic roles. Bacillus stimulated root elongation and enhanced transcription of auxin-responsive genes (i.e., GmPIN2b and GmYUC2a), whereas Pseudomonas elevated Pi availability in rhizosphere soils and upregulated Pi transporters (i.e., GmPHF1 and GmPT4). Taken together, spatial root allocation and heterogeneous microbial communities across root zones play a critical role in determining intercropping advantages, which is regulated by genistein exudation in soybean roots. Our study provides novel insights into root exudate-driven microbial zonation as a strategic adaptation to nutrient stress, with implications for optimising sustainable intercropping systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信