Manasa R Appidi, Sameer Mudbhari, Kevin Cope, Sara S Jawdy, Dana L Carper, Edanur Öksüz, Xianghu Wang, Timothy Tschaplinski, Mingxun Wang, Robert L Hettich, Udaya Kalluri, Paul E Abraham
{"title":"多年生木本杨根沉积动态。","authors":"Manasa R Appidi, Sameer Mudbhari, Kevin Cope, Sara S Jawdy, Dana L Carper, Edanur Öksüz, Xianghu Wang, Timothy Tschaplinski, Mingxun Wang, Robert L Hettich, Udaya Kalluri, Paul E Abraham","doi":"10.1111/pce.70004","DOIUrl":null,"url":null,"abstract":"<p><p>Plants undergo physiological and metabolic changes that release specific molecules into the surrounding soil, a process collectively known as rhizodeposition. These compounds play crucial roles in plant-microbe-soil interactions, such as supporting plant development and resilience in changing environments. Under nutrient-limited conditions, these plant-derived compounds modify the rhizosphere environment, mobilizing otherwise inaccessible nutrients and recruiting stress-adaptive microbial communities that support stress resilience. Currently, the chemical diversity of rhizodeposition has yet to be fully realized but is expected to be a complex mixture that includes soluble organic compounds excreted from root cells, along with products of root cell turnover, sloughed-off root cap and border cells, and mucilage. Here, we developed a methodological and conceptual framework for an in-depth measurement of rhizodeposition through critical advancements in untargeted metabolomics. This approach provided foundational insights into the dynamic changes in rhizodeposition for the woody perennial Populus trichocarpa and rhizodeposit profiles varying by genotype, time, location, and environment. More broadly, this study provides a framework that will help formulate the next steps to effectively study rhizodeposition.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Rhizodeposition in the Woody Perennial Populus trichocarpa.\",\"authors\":\"Manasa R Appidi, Sameer Mudbhari, Kevin Cope, Sara S Jawdy, Dana L Carper, Edanur Öksüz, Xianghu Wang, Timothy Tschaplinski, Mingxun Wang, Robert L Hettich, Udaya Kalluri, Paul E Abraham\",\"doi\":\"10.1111/pce.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants undergo physiological and metabolic changes that release specific molecules into the surrounding soil, a process collectively known as rhizodeposition. These compounds play crucial roles in plant-microbe-soil interactions, such as supporting plant development and resilience in changing environments. Under nutrient-limited conditions, these plant-derived compounds modify the rhizosphere environment, mobilizing otherwise inaccessible nutrients and recruiting stress-adaptive microbial communities that support stress resilience. Currently, the chemical diversity of rhizodeposition has yet to be fully realized but is expected to be a complex mixture that includes soluble organic compounds excreted from root cells, along with products of root cell turnover, sloughed-off root cap and border cells, and mucilage. Here, we developed a methodological and conceptual framework for an in-depth measurement of rhizodeposition through critical advancements in untargeted metabolomics. This approach provided foundational insights into the dynamic changes in rhizodeposition for the woody perennial Populus trichocarpa and rhizodeposit profiles varying by genotype, time, location, and environment. More broadly, this study provides a framework that will help formulate the next steps to effectively study rhizodeposition.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Dynamic Rhizodeposition in the Woody Perennial Populus trichocarpa.
Plants undergo physiological and metabolic changes that release specific molecules into the surrounding soil, a process collectively known as rhizodeposition. These compounds play crucial roles in plant-microbe-soil interactions, such as supporting plant development and resilience in changing environments. Under nutrient-limited conditions, these plant-derived compounds modify the rhizosphere environment, mobilizing otherwise inaccessible nutrients and recruiting stress-adaptive microbial communities that support stress resilience. Currently, the chemical diversity of rhizodeposition has yet to be fully realized but is expected to be a complex mixture that includes soluble organic compounds excreted from root cells, along with products of root cell turnover, sloughed-off root cap and border cells, and mucilage. Here, we developed a methodological and conceptual framework for an in-depth measurement of rhizodeposition through critical advancements in untargeted metabolomics. This approach provided foundational insights into the dynamic changes in rhizodeposition for the woody perennial Populus trichocarpa and rhizodeposit profiles varying by genotype, time, location, and environment. More broadly, this study provides a framework that will help formulate the next steps to effectively study rhizodeposition.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.