利用辐照硝酸铈铵生产气相硝酸盐自由基:生物源和生物质燃烧前体形成二次有机气溶胶的见解。

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Andrew T Lambe, Chase K Glenn, Anita M Avery, Tianchang Xu, Jenna C Ditto, Manjula R Canagaratna, Drew R Gentner, Kenneth S Docherty, Mohammed Jaoui, Julia Zaks, Allan K Bertram, Nga L Ng, Pengfei Liu
{"title":"利用辐照硝酸铈铵生产气相硝酸盐自由基:生物源和生物质燃烧前体形成二次有机气溶胶的见解。","authors":"Andrew T Lambe, Chase K Glenn, Anita M Avery, Tianchang Xu, Jenna C Ditto, Manjula R Canagaratna, Drew R Gentner, Kenneth S Docherty, Mohammed Jaoui, Julia Zaks, Allan K Bertram, Nga L Ng, Pengfei Liu","doi":"10.1021/acsearthspacechem.4c00293","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of nitrate radicals <math> <mfenced> <mrow> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </mrow> </mfenced> </math> as a nighttime atmospheric oxidant is well-established. For decades, laboratory studies of multiphase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> chemistry have used the same methods - either <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <mo>+</mo> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> reactions or <math> <msub><mrow><mtext>N</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>5</mn></mrow> </msub> </math> thermal decomposition - to generate <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> as it occurs in the atmosphere. These methods, however, come with limitations, especially for <math> <msub><mrow><mtext>N</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>5</mn></mrow> </msub> </math> , which must be produced and stored under cold and dry conditions until use. Recently, we developed a new photolytic source of gas-phase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> by irradiating aerated aqueous solutions of ceric ammonium nitrate and nitric acid. In this study, we adapted the method to maintain stable <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> concentrations for over 24 hr. We applied the method in laboratory oxidation flow reactor (OFR) experiments to measure the yield and chemical composition of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) formed from <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> oxidation of volatile organic compounds (VOCs) emitted by biogenic sources (isoprene, <math><mi>β</mi></math> -pinene, limonene and <math><mi>β</mi></math> -caryophyllene) and biomass burning sources (phenol, guaiacol and syringol). SOA yields and elemental ratios were typically within a factor of 2 and 10%, respectively, of those obtained in studies using conventional <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> sources. Maximum SOA yields obtained in our studies ranged from 0.02 ( <math><mtext>isoprene</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ) to 0.96 ( <math><mi>β</mi></math> -caryophyllene/ <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ). The highest SOA oxygen-to-carbon ratios (O/C) ranged from 0.48 ( <math><mi>β</mi></math> -caryophyllene/ <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ) to 1.61 ( <math><mtext>syringol</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ). Additionally, we characterized novel condensed-phase oxidation products from <math><mtext>syringol</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> reactions. Overall, the use of irradiated aqueous cerium nitrate as a source of gas-phase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> may enable more widespread studies of <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> -initiated oxidative aging, which has been less explored compared to hydroxyl radical chemistry.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"9 3","pages":"545-559"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180755/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gas-Phase Nitrate Radical Production Using Irradiated Ceric Ammonium Nitrate: Insights into Secondary Organic Aerosol Formation from Biogenic and Biomass Burning Precursors.\",\"authors\":\"Andrew T Lambe, Chase K Glenn, Anita M Avery, Tianchang Xu, Jenna C Ditto, Manjula R Canagaratna, Drew R Gentner, Kenneth S Docherty, Mohammed Jaoui, Julia Zaks, Allan K Bertram, Nga L Ng, Pengfei Liu\",\"doi\":\"10.1021/acsearthspacechem.4c00293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The importance of nitrate radicals <math> <mfenced> <mrow> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </mrow> </mfenced> </math> as a nighttime atmospheric oxidant is well-established. For decades, laboratory studies of multiphase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> chemistry have used the same methods - either <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <mo>+</mo> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> reactions or <math> <msub><mrow><mtext>N</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>5</mn></mrow> </msub> </math> thermal decomposition - to generate <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> as it occurs in the atmosphere. These methods, however, come with limitations, especially for <math> <msub><mrow><mtext>N</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>5</mn></mrow> </msub> </math> , which must be produced and stored under cold and dry conditions until use. Recently, we developed a new photolytic source of gas-phase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> by irradiating aerated aqueous solutions of ceric ammonium nitrate and nitric acid. In this study, we adapted the method to maintain stable <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> concentrations for over 24 hr. We applied the method in laboratory oxidation flow reactor (OFR) experiments to measure the yield and chemical composition of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) formed from <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> oxidation of volatile organic compounds (VOCs) emitted by biogenic sources (isoprene, <math><mi>β</mi></math> -pinene, limonene and <math><mi>β</mi></math> -caryophyllene) and biomass burning sources (phenol, guaiacol and syringol). SOA yields and elemental ratios were typically within a factor of 2 and 10%, respectively, of those obtained in studies using conventional <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> sources. Maximum SOA yields obtained in our studies ranged from 0.02 ( <math><mtext>isoprene</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ) to 0.96 ( <math><mi>β</mi></math> -caryophyllene/ <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ). The highest SOA oxygen-to-carbon ratios (O/C) ranged from 0.48 ( <math><mi>β</mi></math> -caryophyllene/ <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ) to 1.61 ( <math><mtext>syringol</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ). Additionally, we characterized novel condensed-phase oxidation products from <math><mtext>syringol</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> reactions. Overall, the use of irradiated aqueous cerium nitrate as a source of gas-phase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> may enable more widespread studies of <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> -initiated oxidative aging, which has been less explored compared to hydroxyl radical chemistry.</p>\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":\"9 3\",\"pages\":\"545-559\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180755/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsearthspacechem.4c00293\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsearthspacechem.4c00293","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硝酸自由基no3作为夜间大气氧化剂的重要性是公认的。几十年来,实验室对多相NO 3化学的研究使用了相同的方法——要么是NO 2 + O 3反应,要么是n2o 5热分解——来生成在大气中发生的NO 3。然而,这些方法都有局限性,特别是对于二氧化氮,它必须在寒冷和干燥的条件下生产和储存,直到使用。最近,我们开发了一种新的气相no3光解源,即用曝气的硝酸铈铵和硝酸水溶液照射。在这项研究中,我们采用了这种方法来保持稳定的no3浓度超过24小时。采用该方法在实验室氧化流动反应器(OFR)实验中测量了生物源(异戊二烯、β -蒎烯、柠檬烯和β -石竹烯)和生物质燃烧源(苯酚、愈创木酚和丁香醇)排放的挥发性有机物(VOCs)的NO 3氧化形成的含氧挥发性有机物(OVOCs)和二次有机气溶胶(SOA)的产率和化学组成。SOA产率和元素比率通常分别在使用传统no3来源的研究中获得的2%和10%的因子内。在我们的研究中获得的最大SOA产率范围从0.02(异戊二烯/ no3)到0.96 (β -石竹烯/ no3)。最高的SOA氧碳比(O/C)范围为0.48 (β -石竹烯/ no3)至1.61(丁香醇/ no3)。此外,我们还表征了丁香醇/ no3反应的新型缩合相氧化产物。总的来说,使用辐照的硝酸铈水溶液作为气相NO 3的来源,可以更广泛地研究NO 3引发的氧化老化,与羟基自由基化学相比,这方面的研究较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gas-Phase Nitrate Radical Production Using Irradiated Ceric Ammonium Nitrate: Insights into Secondary Organic Aerosol Formation from Biogenic and Biomass Burning Precursors.

The importance of nitrate radicals NO 3 as a nighttime atmospheric oxidant is well-established. For decades, laboratory studies of multiphase NO 3 chemistry have used the same methods - either NO 2 + O 3 reactions or N 2 O 5 thermal decomposition - to generate NO 3 as it occurs in the atmosphere. These methods, however, come with limitations, especially for N 2 O 5 , which must be produced and stored under cold and dry conditions until use. Recently, we developed a new photolytic source of gas-phase NO 3 by irradiating aerated aqueous solutions of ceric ammonium nitrate and nitric acid. In this study, we adapted the method to maintain stable NO 3 concentrations for over 24 hr. We applied the method in laboratory oxidation flow reactor (OFR) experiments to measure the yield and chemical composition of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) formed from NO 3 oxidation of volatile organic compounds (VOCs) emitted by biogenic sources (isoprene, β -pinene, limonene and β -caryophyllene) and biomass burning sources (phenol, guaiacol and syringol). SOA yields and elemental ratios were typically within a factor of 2 and 10%, respectively, of those obtained in studies using conventional NO 3 sources. Maximum SOA yields obtained in our studies ranged from 0.02 ( isoprene / NO 3 ) to 0.96 ( β -caryophyllene/ NO 3 ). The highest SOA oxygen-to-carbon ratios (O/C) ranged from 0.48 ( β -caryophyllene/ NO 3 ) to 1.61 ( syringol / NO 3 ). Additionally, we characterized novel condensed-phase oxidation products from syringol / NO 3 reactions. Overall, the use of irradiated aqueous cerium nitrate as a source of gas-phase NO 3 may enable more widespread studies of NO 3 -initiated oxidative aging, which has been less explored compared to hydroxyl radical chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信