Andrew T Lambe, Chase K Glenn, Anita M Avery, Tianchang Xu, Jenna C Ditto, Manjula R Canagaratna, Drew R Gentner, Kenneth S Docherty, Mohammed Jaoui, Julia Zaks, Allan K Bertram, Nga L Ng, Pengfei Liu
{"title":"利用辐照硝酸铈铵生产气相硝酸盐自由基:生物源和生物质燃烧前体形成二次有机气溶胶的见解。","authors":"Andrew T Lambe, Chase K Glenn, Anita M Avery, Tianchang Xu, Jenna C Ditto, Manjula R Canagaratna, Drew R Gentner, Kenneth S Docherty, Mohammed Jaoui, Julia Zaks, Allan K Bertram, Nga L Ng, Pengfei Liu","doi":"10.1021/acsearthspacechem.4c00293","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of nitrate radicals <math> <mfenced> <mrow> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </mrow> </mfenced> </math> as a nighttime atmospheric oxidant is well-established. For decades, laboratory studies of multiphase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> chemistry have used the same methods - either <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <mo>+</mo> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> reactions or <math> <msub><mrow><mtext>N</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>5</mn></mrow> </msub> </math> thermal decomposition - to generate <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> as it occurs in the atmosphere. These methods, however, come with limitations, especially for <math> <msub><mrow><mtext>N</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>5</mn></mrow> </msub> </math> , which must be produced and stored under cold and dry conditions until use. Recently, we developed a new photolytic source of gas-phase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> by irradiating aerated aqueous solutions of ceric ammonium nitrate and nitric acid. In this study, we adapted the method to maintain stable <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> concentrations for over 24 hr. We applied the method in laboratory oxidation flow reactor (OFR) experiments to measure the yield and chemical composition of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) formed from <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> oxidation of volatile organic compounds (VOCs) emitted by biogenic sources (isoprene, <math><mi>β</mi></math> -pinene, limonene and <math><mi>β</mi></math> -caryophyllene) and biomass burning sources (phenol, guaiacol and syringol). SOA yields and elemental ratios were typically within a factor of 2 and 10%, respectively, of those obtained in studies using conventional <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> sources. Maximum SOA yields obtained in our studies ranged from 0.02 ( <math><mtext>isoprene</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ) to 0.96 ( <math><mi>β</mi></math> -caryophyllene/ <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ). The highest SOA oxygen-to-carbon ratios (O/C) ranged from 0.48 ( <math><mi>β</mi></math> -caryophyllene/ <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ) to 1.61 ( <math><mtext>syringol</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ). Additionally, we characterized novel condensed-phase oxidation products from <math><mtext>syringol</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> reactions. Overall, the use of irradiated aqueous cerium nitrate as a source of gas-phase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> may enable more widespread studies of <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> -initiated oxidative aging, which has been less explored compared to hydroxyl radical chemistry.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"9 3","pages":"545-559"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180755/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gas-Phase Nitrate Radical Production Using Irradiated Ceric Ammonium Nitrate: Insights into Secondary Organic Aerosol Formation from Biogenic and Biomass Burning Precursors.\",\"authors\":\"Andrew T Lambe, Chase K Glenn, Anita M Avery, Tianchang Xu, Jenna C Ditto, Manjula R Canagaratna, Drew R Gentner, Kenneth S Docherty, Mohammed Jaoui, Julia Zaks, Allan K Bertram, Nga L Ng, Pengfei Liu\",\"doi\":\"10.1021/acsearthspacechem.4c00293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The importance of nitrate radicals <math> <mfenced> <mrow> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </mrow> </mfenced> </math> as a nighttime atmospheric oxidant is well-established. For decades, laboratory studies of multiphase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> chemistry have used the same methods - either <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <mo>+</mo> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> reactions or <math> <msub><mrow><mtext>N</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>5</mn></mrow> </msub> </math> thermal decomposition - to generate <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> as it occurs in the atmosphere. These methods, however, come with limitations, especially for <math> <msub><mrow><mtext>N</mtext></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mtext>O</mtext></mrow> <mrow><mn>5</mn></mrow> </msub> </math> , which must be produced and stored under cold and dry conditions until use. Recently, we developed a new photolytic source of gas-phase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> by irradiating aerated aqueous solutions of ceric ammonium nitrate and nitric acid. In this study, we adapted the method to maintain stable <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> concentrations for over 24 hr. We applied the method in laboratory oxidation flow reactor (OFR) experiments to measure the yield and chemical composition of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) formed from <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> oxidation of volatile organic compounds (VOCs) emitted by biogenic sources (isoprene, <math><mi>β</mi></math> -pinene, limonene and <math><mi>β</mi></math> -caryophyllene) and biomass burning sources (phenol, guaiacol and syringol). SOA yields and elemental ratios were typically within a factor of 2 and 10%, respectively, of those obtained in studies using conventional <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> sources. Maximum SOA yields obtained in our studies ranged from 0.02 ( <math><mtext>isoprene</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ) to 0.96 ( <math><mi>β</mi></math> -caryophyllene/ <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ). The highest SOA oxygen-to-carbon ratios (O/C) ranged from 0.48 ( <math><mi>β</mi></math> -caryophyllene/ <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ) to 1.61 ( <math><mtext>syringol</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> ). Additionally, we characterized novel condensed-phase oxidation products from <math><mtext>syringol</mtext> <mo>/</mo> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> reactions. Overall, the use of irradiated aqueous cerium nitrate as a source of gas-phase <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> may enable more widespread studies of <math> <msub><mrow><mtext>NO</mtext></mrow> <mrow><mn>3</mn></mrow> </msub> </math> -initiated oxidative aging, which has been less explored compared to hydroxyl radical chemistry.</p>\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":\"9 3\",\"pages\":\"545-559\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180755/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsearthspacechem.4c00293\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsearthspacechem.4c00293","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Gas-Phase Nitrate Radical Production Using Irradiated Ceric Ammonium Nitrate: Insights into Secondary Organic Aerosol Formation from Biogenic and Biomass Burning Precursors.
The importance of nitrate radicals as a nighttime atmospheric oxidant is well-established. For decades, laboratory studies of multiphase chemistry have used the same methods - either reactions or thermal decomposition - to generate as it occurs in the atmosphere. These methods, however, come with limitations, especially for , which must be produced and stored under cold and dry conditions until use. Recently, we developed a new photolytic source of gas-phase by irradiating aerated aqueous solutions of ceric ammonium nitrate and nitric acid. In this study, we adapted the method to maintain stable concentrations for over 24 hr. We applied the method in laboratory oxidation flow reactor (OFR) experiments to measure the yield and chemical composition of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) formed from oxidation of volatile organic compounds (VOCs) emitted by biogenic sources (isoprene, -pinene, limonene and -caryophyllene) and biomass burning sources (phenol, guaiacol and syringol). SOA yields and elemental ratios were typically within a factor of 2 and 10%, respectively, of those obtained in studies using conventional sources. Maximum SOA yields obtained in our studies ranged from 0.02 ( ) to 0.96 ( -caryophyllene/ ). The highest SOA oxygen-to-carbon ratios (O/C) ranged from 0.48 ( -caryophyllene/ ) to 1.61 ( ). Additionally, we characterized novel condensed-phase oxidation products from reactions. Overall, the use of irradiated aqueous cerium nitrate as a source of gas-phase may enable more widespread studies of -initiated oxidative aging, which has been less explored compared to hydroxyl radical chemistry.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.