{"title":"基于水凝胶的生物传感器技术在神经退行性疾病诊断中的最新进展。","authors":"Seda Ayçiçek, Şule Coşkun Cevher, Selim Acar","doi":"10.1021/acsabm.5c00420","DOIUrl":null,"url":null,"abstract":"<p><p>Early diagnosis of neurodegenerative diseases is essential for the development of appropriate treatment strategies. Current diagnostic methods have a number of limitations and challenges. Alternative biomaterials such as hydrogels are potential candidates that are attracting attention in the design process of biosensors for the diagnosis of neurodegenerative diseases. Three-dimensional networks of cross-linked hydrophilic polymers, known as hydrogels, have characteristics that are comparable to those of biological tissues. The integration of hydrogels into biosensor designs for the diagnosis of neurodegenerative diseases offers functionality and structural advantages. This review summarizes recent trends in hydrogel-based biosensors for the detection of neurodegenerative diseases, their design, applications, as well as a comprehensive overview of their advantages and disadvantages.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Trends in Hydrogel-Based Biosensor Technology for the Diagnosis of Neurodegenerative Diseases.\",\"authors\":\"Seda Ayçiçek, Şule Coşkun Cevher, Selim Acar\",\"doi\":\"10.1021/acsabm.5c00420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early diagnosis of neurodegenerative diseases is essential for the development of appropriate treatment strategies. Current diagnostic methods have a number of limitations and challenges. Alternative biomaterials such as hydrogels are potential candidates that are attracting attention in the design process of biosensors for the diagnosis of neurodegenerative diseases. Three-dimensional networks of cross-linked hydrophilic polymers, known as hydrogels, have characteristics that are comparable to those of biological tissues. The integration of hydrogels into biosensor designs for the diagnosis of neurodegenerative diseases offers functionality and structural advantages. This review summarizes recent trends in hydrogel-based biosensors for the detection of neurodegenerative diseases, their design, applications, as well as a comprehensive overview of their advantages and disadvantages.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.5c00420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Recent Trends in Hydrogel-Based Biosensor Technology for the Diagnosis of Neurodegenerative Diseases.
Early diagnosis of neurodegenerative diseases is essential for the development of appropriate treatment strategies. Current diagnostic methods have a number of limitations and challenges. Alternative biomaterials such as hydrogels are potential candidates that are attracting attention in the design process of biosensors for the diagnosis of neurodegenerative diseases. Three-dimensional networks of cross-linked hydrophilic polymers, known as hydrogels, have characteristics that are comparable to those of biological tissues. The integration of hydrogels into biosensor designs for the diagnosis of neurodegenerative diseases offers functionality and structural advantages. This review summarizes recent trends in hydrogel-based biosensors for the detection of neurodegenerative diseases, their design, applications, as well as a comprehensive overview of their advantages and disadvantages.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.