消费后电子垃圾脱溴ABS与原生ABS注塑复合过程中粘接界面的数值模拟

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Imane Belyamani, Layla Gripon, Eric Lafranche, Laurent Cauret
{"title":"消费后电子垃圾脱溴ABS与原生ABS注塑复合过程中粘接界面的数值模拟","authors":"Imane Belyamani,&nbsp;Layla Gripon,&nbsp;Eric Lafranche,&nbsp;Laurent Cauret","doi":"10.1002/adsu.202500002","DOIUrl":null,"url":null,"abstract":"<p>The growing volume of waste electrical and electronic equipment (commonly known as e-waste or WEEE) plastics presents significant environmental and regulatory challenges, particularly due to the presence of brominated flame retardants (BFRs). This study presents groundbreaking research on the mechanical recycling of brominated acrylonitrile butadiene styrene (ABS) derived from real post-consumer WEEE. It evaluates the effectiveness of BFR extraction and explores the feasibility of simulating injection overmolding using the debrominated polymer. The extraction process achieves BFR removal rates exceeding 94%, reducing the final BFR content, mainly those identified as persistent organic pollutants (BFR-POPs), to below 50 ppm, thus complying with Directive 2019/1021/EU. Compared to virgin ABS (vABS), the debrominated ABS maintains its physico-chemical characteristics with increased elastic modulus, stress at yield, and stress at break, although impact toughness is reduced. Moldflow simulations reveal that the polymer interface temperature and duration above ABS's glass transition temperature are insufficient for optimal polymer chain auto-diffusion. To maximize interlayer adhesion, both mold and material temperatures must be increased. These findings confirm the technical feasibility of BFR removal and reuse of ABS in value-added applications, contributing to sustainable material development and circular economy objectives for WEEE plastics.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 6","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of the Adhesion Interface in Injection Overmolding of Virgin ABS with Debrominated ABS from Post-Consumer E-Waste\",\"authors\":\"Imane Belyamani,&nbsp;Layla Gripon,&nbsp;Eric Lafranche,&nbsp;Laurent Cauret\",\"doi\":\"10.1002/adsu.202500002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growing volume of waste electrical and electronic equipment (commonly known as e-waste or WEEE) plastics presents significant environmental and regulatory challenges, particularly due to the presence of brominated flame retardants (BFRs). This study presents groundbreaking research on the mechanical recycling of brominated acrylonitrile butadiene styrene (ABS) derived from real post-consumer WEEE. It evaluates the effectiveness of BFR extraction and explores the feasibility of simulating injection overmolding using the debrominated polymer. The extraction process achieves BFR removal rates exceeding 94%, reducing the final BFR content, mainly those identified as persistent organic pollutants (BFR-POPs), to below 50 ppm, thus complying with Directive 2019/1021/EU. Compared to virgin ABS (vABS), the debrominated ABS maintains its physico-chemical characteristics with increased elastic modulus, stress at yield, and stress at break, although impact toughness is reduced. Moldflow simulations reveal that the polymer interface temperature and duration above ABS's glass transition temperature are insufficient for optimal polymer chain auto-diffusion. To maximize interlayer adhesion, both mold and material temperatures must be increased. These findings confirm the technical feasibility of BFR removal and reuse of ABS in value-added applications, contributing to sustainable material development and circular economy objectives for WEEE plastics.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"9 6\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500002\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500002","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的废弃电气和电子设备(通常称为电子废物或WEEE)塑料提出了重大的环境和监管挑战,特别是由于溴化阻燃剂(BFRs)的存在。这项研究提出了突破性的机械回收溴化丙烯腈-丁二烯苯乙烯(ABS)的研究,这些ABS来源于真正的消费后报废电子电气设备。评价了BFR萃取的有效性,探讨了用脱溴化聚合物模拟注塑成型的可行性。该萃取工艺的BFR去除率超过94%,将最终BFR含量(主要是那些被确定为持久性有机污染物(BFR- pop))降至50 ppm以下,从而符合2019/1021/EU指令。与纯ABS (vABS)相比,脱溴ABS保持了其物理化学特性,增加了弹性模量、屈服应力和断裂应力,但降低了冲击韧性。模流模拟表明,聚合物界面温度和高于ABS玻璃化转变温度的持续时间不足以实现最佳的聚合物链自动扩散。为了最大限度地提高层间附着力,必须提高模具和材料的温度。这些发现证实了在增值应用中去除BFR和再利用ABS的技术可行性,有助于实现WEEE塑料的可持续材料开发和循环经济目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Simulation of the Adhesion Interface in Injection Overmolding of Virgin ABS with Debrominated ABS from Post-Consumer E-Waste

The growing volume of waste electrical and electronic equipment (commonly known as e-waste or WEEE) plastics presents significant environmental and regulatory challenges, particularly due to the presence of brominated flame retardants (BFRs). This study presents groundbreaking research on the mechanical recycling of brominated acrylonitrile butadiene styrene (ABS) derived from real post-consumer WEEE. It evaluates the effectiveness of BFR extraction and explores the feasibility of simulating injection overmolding using the debrominated polymer. The extraction process achieves BFR removal rates exceeding 94%, reducing the final BFR content, mainly those identified as persistent organic pollutants (BFR-POPs), to below 50 ppm, thus complying with Directive 2019/1021/EU. Compared to virgin ABS (vABS), the debrominated ABS maintains its physico-chemical characteristics with increased elastic modulus, stress at yield, and stress at break, although impact toughness is reduced. Moldflow simulations reveal that the polymer interface temperature and duration above ABS's glass transition temperature are insufficient for optimal polymer chain auto-diffusion. To maximize interlayer adhesion, both mold and material temperatures must be increased. These findings confirm the technical feasibility of BFR removal and reuse of ABS in value-added applications, contributing to sustainable material development and circular economy objectives for WEEE plastics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信