E3SM-Arctic:用于深入了解北极系统相互作用的区域精细耦合模式

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Yiling Huo, Hailong Wang, Milena Veneziani, Darin Comeau, Robert Osinski, Benjamin R. Hillman, Erika Roesler, Wieslaw Maslowski, Philip J. Rasch, Wilbert Weijer, Ian Baxter, Qiang Fu, Oluwayemi A. Garuba, Weiming Ma, Mark W. Seefeldt, Aodhan Sweeney, Mingxuan Wu, Jing Zhang, Xiangdong Zhang, Yu Zhang, Xylar Asay-Davis, Anthony P. Craig, Younjoo J. Lee, Wuyin Lin, Andrew F. Roberts, Jonathan D. Wolfe, Shixuan Zhang
{"title":"E3SM-Arctic:用于深入了解北极系统相互作用的区域精细耦合模式","authors":"Yiling Huo,&nbsp;Hailong Wang,&nbsp;Milena Veneziani,&nbsp;Darin Comeau,&nbsp;Robert Osinski,&nbsp;Benjamin R. Hillman,&nbsp;Erika Roesler,&nbsp;Wieslaw Maslowski,&nbsp;Philip J. Rasch,&nbsp;Wilbert Weijer,&nbsp;Ian Baxter,&nbsp;Qiang Fu,&nbsp;Oluwayemi A. Garuba,&nbsp;Weiming Ma,&nbsp;Mark W. Seefeldt,&nbsp;Aodhan Sweeney,&nbsp;Mingxuan Wu,&nbsp;Jing Zhang,&nbsp;Xiangdong Zhang,&nbsp;Yu Zhang,&nbsp;Xylar Asay-Davis,&nbsp;Anthony P. Craig,&nbsp;Younjoo J. Lee,&nbsp;Wuyin Lin,&nbsp;Andrew F. Roberts,&nbsp;Jonathan D. Wolfe,&nbsp;Shixuan Zhang","doi":"10.1029/2024MS004726","DOIUrl":null,"url":null,"abstract":"<p>Earth system models are essential tools for climate projections, but coarse resolutions limit regional accuracy, especially in the Arctic. Regionally refined meshes (RRMs) enhance resolution in key areas while maintaining computational efficiency. This paper provides an overview of the United States (U.S.) Department of Energy's (DOE's) Energy Exascale Earth System Model version 2.1 with an Arctic RRM, hereafter referred to as E3SMv2.1-Arctic, for the atmosphere (25 km), land (25 km), and ocean/ice (10 km) components. We evaluate the atmospheric component and its interactions with land, ocean, and cryosphere by comparing the RRM (E3SM2.1-Arctic) historical simulations (1950–2014) with the uniform low-resolution (LR) counterpart, reanalysis products, and observational data sets. The RRM generally reduces biases in the LR model, improving simulations of Arctic large-scale mean fields, such as precipitation, atmospheric circulation, clouds, atmospheric river frequency, and sea ice thickness. However, it introduces a seasonally dependent surface air temperature bias, reducing the LR cold bias in summer but enhancing the LR warm bias in winter, which contributes to the underestimated winter sea ice area and volume. Radiative feedback analysis shows similar climate feedback strengths in both model configurations, with the RRM exhibiting a more positive surface albedo feedback and contributing to a stronger surface warming than LR. These findings underscore the importance of high-resolution modeling for advancing our understanding of Arctic climate changes and their broader global impacts, although some persistent biases appear to be independent of model resolution at 10–100 km scales.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004726","citationCount":"0","resultStr":"{\"title\":\"E3SM-Arctic: Regionally Refined Coupled Model for Advanced Understanding of Arctic Systems Interactions\",\"authors\":\"Yiling Huo,&nbsp;Hailong Wang,&nbsp;Milena Veneziani,&nbsp;Darin Comeau,&nbsp;Robert Osinski,&nbsp;Benjamin R. Hillman,&nbsp;Erika Roesler,&nbsp;Wieslaw Maslowski,&nbsp;Philip J. Rasch,&nbsp;Wilbert Weijer,&nbsp;Ian Baxter,&nbsp;Qiang Fu,&nbsp;Oluwayemi A. Garuba,&nbsp;Weiming Ma,&nbsp;Mark W. Seefeldt,&nbsp;Aodhan Sweeney,&nbsp;Mingxuan Wu,&nbsp;Jing Zhang,&nbsp;Xiangdong Zhang,&nbsp;Yu Zhang,&nbsp;Xylar Asay-Davis,&nbsp;Anthony P. Craig,&nbsp;Younjoo J. Lee,&nbsp;Wuyin Lin,&nbsp;Andrew F. Roberts,&nbsp;Jonathan D. Wolfe,&nbsp;Shixuan Zhang\",\"doi\":\"10.1029/2024MS004726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Earth system models are essential tools for climate projections, but coarse resolutions limit regional accuracy, especially in the Arctic. Regionally refined meshes (RRMs) enhance resolution in key areas while maintaining computational efficiency. This paper provides an overview of the United States (U.S.) Department of Energy's (DOE's) Energy Exascale Earth System Model version 2.1 with an Arctic RRM, hereafter referred to as E3SMv2.1-Arctic, for the atmosphere (25 km), land (25 km), and ocean/ice (10 km) components. We evaluate the atmospheric component and its interactions with land, ocean, and cryosphere by comparing the RRM (E3SM2.1-Arctic) historical simulations (1950–2014) with the uniform low-resolution (LR) counterpart, reanalysis products, and observational data sets. The RRM generally reduces biases in the LR model, improving simulations of Arctic large-scale mean fields, such as precipitation, atmospheric circulation, clouds, atmospheric river frequency, and sea ice thickness. However, it introduces a seasonally dependent surface air temperature bias, reducing the LR cold bias in summer but enhancing the LR warm bias in winter, which contributes to the underestimated winter sea ice area and volume. Radiative feedback analysis shows similar climate feedback strengths in both model configurations, with the RRM exhibiting a more positive surface albedo feedback and contributing to a stronger surface warming than LR. These findings underscore the importance of high-resolution modeling for advancing our understanding of Arctic climate changes and their broader global impacts, although some persistent biases appear to be independent of model resolution at 10–100 km scales.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004726\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004726\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004726","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

地球系统模型是气候预测的重要工具,但粗糙的分辨率限制了区域精度,特别是在北极。区域精细网格在保持计算效率的同时,提高了关键区域的分辨率。本文提供了美国的概况。美国能源部(DOE)能源百亿亿次地球系统模型2.1版本,包含北极RRM,以下简称E3SMv2.1-Arctic,用于大气(25公里),陆地(25公里)和海洋/冰(10公里)组件。通过比较RRM (E3SM2.1-Arctic)历史模拟(1950-2014)与统一低分辨率(LR)模拟、再分析产品和观测数据集,我们评估了大气成分及其与陆地、海洋和冰冻圈的相互作用。RRM总体上减少了LR模式的偏差,改善了北极大尺度平均场的模拟,如降水、大气环流、云、大气河流频率和海冰厚度。然而,它引入了季节性的地表空气温度偏倚,在夏季减少了LR冷偏,而在冬季增强了LR暖偏,这导致冬季海冰面积和体积被低估。辐射反馈分析显示,两种模式配置的气候反馈强度相似,RRM表现出更积极的地表反照率反馈,比LR对地表增温的贡献更大。这些发现强调了高分辨率模型对于促进我们对北极气候变化及其更广泛的全球影响的理解的重要性,尽管在10-100公里尺度上,一些持续存在的偏差似乎与模型分辨率无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E3SM-Arctic: Regionally Refined Coupled Model for Advanced Understanding of Arctic Systems Interactions

Earth system models are essential tools for climate projections, but coarse resolutions limit regional accuracy, especially in the Arctic. Regionally refined meshes (RRMs) enhance resolution in key areas while maintaining computational efficiency. This paper provides an overview of the United States (U.S.) Department of Energy's (DOE's) Energy Exascale Earth System Model version 2.1 with an Arctic RRM, hereafter referred to as E3SMv2.1-Arctic, for the atmosphere (25 km), land (25 km), and ocean/ice (10 km) components. We evaluate the atmospheric component and its interactions with land, ocean, and cryosphere by comparing the RRM (E3SM2.1-Arctic) historical simulations (1950–2014) with the uniform low-resolution (LR) counterpart, reanalysis products, and observational data sets. The RRM generally reduces biases in the LR model, improving simulations of Arctic large-scale mean fields, such as precipitation, atmospheric circulation, clouds, atmospheric river frequency, and sea ice thickness. However, it introduces a seasonally dependent surface air temperature bias, reducing the LR cold bias in summer but enhancing the LR warm bias in winter, which contributes to the underestimated winter sea ice area and volume. Radiative feedback analysis shows similar climate feedback strengths in both model configurations, with the RRM exhibiting a more positive surface albedo feedback and contributing to a stronger surface warming than LR. These findings underscore the importance of high-resolution modeling for advancing our understanding of Arctic climate changes and their broader global impacts, although some persistent biases appear to be independent of model resolution at 10–100 km scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信