高性能混合超级电容器器件中无粘结剂锰铁氧体电极的三维控制生长

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Rushiraj P. Bhosale, Sambhaji S. Kumbhar, Shraddha B. Bhosale, Amar M. Patil, Seong C. Jun, Dhanashri S. Gaikwad, Umakant M. Patil, Chandrakant D. Lokhande, Vinayak S. Jamadade
{"title":"高性能混合超级电容器器件中无粘结剂锰铁氧体电极的三维控制生长","authors":"Rushiraj P. Bhosale,&nbsp;Sambhaji S. Kumbhar,&nbsp;Shraddha B. Bhosale,&nbsp;Amar M. Patil,&nbsp;Seong C. Jun,&nbsp;Dhanashri S. Gaikwad,&nbsp;Umakant M. Patil,&nbsp;Chandrakant D. Lokhande,&nbsp;Vinayak S. Jamadade","doi":"10.1002/adsu.202500067","DOIUrl":null,"url":null,"abstract":"<p>The remarkable electrochemical features and promise for improved performance of binder-free manganese ferrite have attracted a lot of research interest in hybrid energy storage devices. The fine-tuning of preparative parameters has a significant impact on energy-storing performance, with deposition time appearing as a crucial parameter in enhancing their electrochemical properties. This work offers a simple and scalable method for the preparation of manganese ferrite with varying deposition times using chemical bath deposition (CBD). Varying deposition time results in a transformation from the manganese ferrite hydrate (MnFe<sub>2</sub>O<sub>4</sub>.H<sub>2</sub>O) to manganese ferrite (MnFe<sub>2</sub>O<sub>4</sub>) cubic structure and alteration in morphology from tetrahedral crystals to octahedral-like in MnFe<sub>2</sub>O<sub>4</sub> series thin films (C-MFO). The MnFe<sub>2</sub>O<sub>4</sub> electrode with an optimal deposition time of 7 h (C-MFO3) sample, featuring a cube-like morphology, achieves a maximum specific capacitance (<i>C</i>s) of 491.2 F g<sup>−1</sup> at 1.5 A g<sup>−1</sup>, maintaining 81.1% retention. Furthermore, the constructed hybrid supercapacitor device (HSD) exhibits a high <i>C</i>s of 73.3 F g<sup>−1</sup>, along with a specific energy (SE) of 36.7 Wh kg<sup>−1</sup> at a specific power (SP) of 1.7 kW kg<sup>−1</sup>. This work introduces a scalable method for producing binder-free manganese ferrite electrodes, suitable for use as cathodes in hybrid energy storage devices for practical applications.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 6","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Controlled Growth of Binder-Free Manganese Ferrite Electrodes for High-Performance Hybrid Supercapacitor Device\",\"authors\":\"Rushiraj P. Bhosale,&nbsp;Sambhaji S. Kumbhar,&nbsp;Shraddha B. Bhosale,&nbsp;Amar M. Patil,&nbsp;Seong C. Jun,&nbsp;Dhanashri S. Gaikwad,&nbsp;Umakant M. Patil,&nbsp;Chandrakant D. Lokhande,&nbsp;Vinayak S. Jamadade\",\"doi\":\"10.1002/adsu.202500067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The remarkable electrochemical features and promise for improved performance of binder-free manganese ferrite have attracted a lot of research interest in hybrid energy storage devices. The fine-tuning of preparative parameters has a significant impact on energy-storing performance, with deposition time appearing as a crucial parameter in enhancing their electrochemical properties. This work offers a simple and scalable method for the preparation of manganese ferrite with varying deposition times using chemical bath deposition (CBD). Varying deposition time results in a transformation from the manganese ferrite hydrate (MnFe<sub>2</sub>O<sub>4</sub>.H<sub>2</sub>O) to manganese ferrite (MnFe<sub>2</sub>O<sub>4</sub>) cubic structure and alteration in morphology from tetrahedral crystals to octahedral-like in MnFe<sub>2</sub>O<sub>4</sub> series thin films (C-MFO). The MnFe<sub>2</sub>O<sub>4</sub> electrode with an optimal deposition time of 7 h (C-MFO3) sample, featuring a cube-like morphology, achieves a maximum specific capacitance (<i>C</i>s) of 491.2 F g<sup>−1</sup> at 1.5 A g<sup>−1</sup>, maintaining 81.1% retention. Furthermore, the constructed hybrid supercapacitor device (HSD) exhibits a high <i>C</i>s of 73.3 F g<sup>−1</sup>, along with a specific energy (SE) of 36.7 Wh kg<sup>−1</sup> at a specific power (SP) of 1.7 kW kg<sup>−1</sup>. This work introduces a scalable method for producing binder-free manganese ferrite electrodes, suitable for use as cathodes in hybrid energy storage devices for practical applications.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"9 6\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500067\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500067","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

无粘结剂铁氧体锰具有显著的电化学特性和改善性能的前景,引起了混合储能装置研究的广泛关注。制备参数的微调对储能性能有重要影响,其中沉积时间是提高其电化学性能的关键参数。本研究为化学浴沉积(CBD)制备不同沉积时间的铁氧体锰提供了一种简单、可扩展的方法。随着沉积时间的变化,MnFe2O4系列薄膜(C-MFO)由锰铁酸盐水合物(MnFe2O4. h2o)向锰铁酸盐(MnFe2O4)的立方结构转变,形貌由四面体晶体转变为八面体晶体。最佳沉积时间为7 h的MnFe2O4电极(C-MFO3)样品具有立方体状的形貌,在1.5 a g−1时达到491.2 F g−1的最大比电容(Cs),保持81.1%的保留率。此外,构建的混合超级电容器器件(HSD)在比功率(SP)为1.7 kW kg - 1时,具有73.3 F g - 1的高Cs,以及36.7 Wh kg - 1的比能量(SE)。这项工作介绍了一种可扩展的方法来生产无粘结剂锰铁氧体电极,适用于实际应用的混合储能装置的阴极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Controlled Growth of Binder-Free Manganese Ferrite Electrodes for High-Performance Hybrid Supercapacitor Device

The remarkable electrochemical features and promise for improved performance of binder-free manganese ferrite have attracted a lot of research interest in hybrid energy storage devices. The fine-tuning of preparative parameters has a significant impact on energy-storing performance, with deposition time appearing as a crucial parameter in enhancing their electrochemical properties. This work offers a simple and scalable method for the preparation of manganese ferrite with varying deposition times using chemical bath deposition (CBD). Varying deposition time results in a transformation from the manganese ferrite hydrate (MnFe2O4.H2O) to manganese ferrite (MnFe2O4) cubic structure and alteration in morphology from tetrahedral crystals to octahedral-like in MnFe2O4 series thin films (C-MFO). The MnFe2O4 electrode with an optimal deposition time of 7 h (C-MFO3) sample, featuring a cube-like morphology, achieves a maximum specific capacitance (Cs) of 491.2 F g−1 at 1.5 A g−1, maintaining 81.1% retention. Furthermore, the constructed hybrid supercapacitor device (HSD) exhibits a high Cs of 73.3 F g−1, along with a specific energy (SE) of 36.7 Wh kg−1 at a specific power (SP) of 1.7 kW kg−1. This work introduces a scalable method for producing binder-free manganese ferrite electrodes, suitable for use as cathodes in hybrid energy storage devices for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信