{"title":"探索新型无铅双钙钛矿A2NaAsCl6 (A = K和Rb)的物理性质:第一性原理方法","authors":"Nazia Iram, Ramesh Sharma, Abhinav Kumar, Jajneswar Nanda, Nargiza Kamolova and Refka Ghodhbani","doi":"10.1039/D5NJ00739A","DOIUrl":null,"url":null,"abstract":"<p >Renewable energy applications have been explored for A<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> (A = K and Rb) owing to its structural, opto-electronic, and thermoelectric properties. The tolerance factor, positive cohesive energy, and formation energy all promise the stability of the compound. Structural parameters show that the atomic radius of Rb is greater than that of K, and hence, the lattice constant increases from K to Rb. With an optimised lattice constant, the band gap values for K<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> and Rb<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> are 3.522 eV and 3.473 eV, respectively. Therefore, these materials are frequently utilised in solar cell and optoelectronic applications. Thermoelectric and thermodynamic properties are analysed by various parameters. The PF values at 300 K are 1.72 × 10<small><sup>11</sup></small> W K<small><sup>−2</sup></small> ms<small><sup>−1</sup></small> and 1.67 × 10<small><sup>11</sup></small> W K<small><sup>−2</sup></small> ms<small><sup>−1</sup></small> for K<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> and Rb<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small>, respectively. <em>ZT</em> values of 0.11 and 0.12 demonstrate how important they are for thermoelectric applications at room temperature. These results highlight that further exploration of A<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> (A = K and Rb) may enhance the thermoelectric capabilities of K<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> and Rb<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small>, making them promising candidates for thermoelectric device applications.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 25","pages":" 11010-11021"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the physical properties of novel lead-free double perovskites A2NaAsCl6 (A = K and Rb): a first-principles approach\",\"authors\":\"Nazia Iram, Ramesh Sharma, Abhinav Kumar, Jajneswar Nanda, Nargiza Kamolova and Refka Ghodhbani\",\"doi\":\"10.1039/D5NJ00739A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Renewable energy applications have been explored for A<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> (A = K and Rb) owing to its structural, opto-electronic, and thermoelectric properties. The tolerance factor, positive cohesive energy, and formation energy all promise the stability of the compound. Structural parameters show that the atomic radius of Rb is greater than that of K, and hence, the lattice constant increases from K to Rb. With an optimised lattice constant, the band gap values for K<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> and Rb<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> are 3.522 eV and 3.473 eV, respectively. Therefore, these materials are frequently utilised in solar cell and optoelectronic applications. Thermoelectric and thermodynamic properties are analysed by various parameters. The PF values at 300 K are 1.72 × 10<small><sup>11</sup></small> W K<small><sup>−2</sup></small> ms<small><sup>−1</sup></small> and 1.67 × 10<small><sup>11</sup></small> W K<small><sup>−2</sup></small> ms<small><sup>−1</sup></small> for K<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> and Rb<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small>, respectively. <em>ZT</em> values of 0.11 and 0.12 demonstrate how important they are for thermoelectric applications at room temperature. These results highlight that further exploration of A<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> (A = K and Rb) may enhance the thermoelectric capabilities of K<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small> and Rb<small><sub>2</sub></small>NaAsCl<small><sub>6</sub></small>, making them promising candidates for thermoelectric device applications.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 25\",\"pages\":\" 11010-11021\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00739a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00739a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
由于A2NaAsCl6 (A = K和Rb)的结构、光电和热电性质,它的可再生能源应用已经被探索。容忍系数、正内聚能和形成能都保证了化合物的稳定性。结构参数表明,Rb的原子半径大于K,因此,从K到Rb,晶格常数增大。在优化的晶格常数下,K2NaAsCl6和Rb2NaAsCl6的带隙值分别为3.522 eV和3.473 eV。因此,这些材料经常用于太阳能电池和光电子应用。通过各种参数分析了热电和热力学性质。K2NaAsCl6和Rb2NaAsCl6在300 K时的PF值分别为1.72 × 1011 W K−2 ms−1和1.67 × 1011 W K−2 ms−1。ZT值为0.11和0.12表明它们对室温下热电应用的重要性。这些结果表明,进一步探索A2NaAsCl6 (A = K和Rb)可能会增强K2NaAsCl6和Rb2NaAsCl6的热电性能,使它们成为热电器件应用的有希望的候选材料。
Probing the physical properties of novel lead-free double perovskites A2NaAsCl6 (A = K and Rb): a first-principles approach
Renewable energy applications have been explored for A2NaAsCl6 (A = K and Rb) owing to its structural, opto-electronic, and thermoelectric properties. The tolerance factor, positive cohesive energy, and formation energy all promise the stability of the compound. Structural parameters show that the atomic radius of Rb is greater than that of K, and hence, the lattice constant increases from K to Rb. With an optimised lattice constant, the band gap values for K2NaAsCl6 and Rb2NaAsCl6 are 3.522 eV and 3.473 eV, respectively. Therefore, these materials are frequently utilised in solar cell and optoelectronic applications. Thermoelectric and thermodynamic properties are analysed by various parameters. The PF values at 300 K are 1.72 × 1011 W K−2 ms−1 and 1.67 × 1011 W K−2 ms−1 for K2NaAsCl6 and Rb2NaAsCl6, respectively. ZT values of 0.11 and 0.12 demonstrate how important they are for thermoelectric applications at room temperature. These results highlight that further exploration of A2NaAsCl6 (A = K and Rb) may enhance the thermoelectric capabilities of K2NaAsCl6 and Rb2NaAsCl6, making them promising candidates for thermoelectric device applications.