通过离子热方法对S-InxZny双金属催化剂进行形貌工程,以增强二氧化碳电还原生成甲酸†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiaoyu Chen, Jie Liu, Shuoshuo Feng, Yanhong Zou, Kai Wu, Fanghua Ning, Jin Yi and Yuyu Liu
{"title":"通过离子热方法对S-InxZny双金属催化剂进行形貌工程,以增强二氧化碳电还原生成甲酸†","authors":"Xiaoyu Chen, Jie Liu, Shuoshuo Feng, Yanhong Zou, Kai Wu, Fanghua Ning, Jin Yi and Yuyu Liu","doi":"10.1039/D5SE00596E","DOIUrl":null,"url":null,"abstract":"<p >The conversion of carbon dioxide through electrochemical reduction (ECO<small><sub>2</sub></small>RR) offers a promising pathway for sustainable carbon cycling, yet the development of efficient catalysts remains challenged by the trade-off between activity and stability. Herein, we report a sulfur-modulated In–Zn bimetallic sulfide catalyst (S-In<small><sub>0.5</sub></small>Zn<small><sub>1</sub></small>) that achieves highly selective CO<small><sub>2</sub></small>-to-formate conversion <em>via</em> morphological engineering. The optimized catalyst demonstrates exceptional performance with a maximum formate faradaic efficiency (FE) of 95.2% at −1.36 V <em>vs.</em> RHE, coupled with outstanding long-term stability exceeding 80 hours. Systematic investigations reveal that Zn incorporation induces a microstructural reconstruction, forming a hierarchical nanoparticle-lamellar composite architecture. This unique morphology significantly enhances the specific surface area and establishes efficient mass transport pathways, effectively mitigating diffusion limitations for both CO<small><sub>2</sub></small> reactants and critical *OCHO intermediates during electrocatalysis. The resultant reduction in kinetic barriers substantially improves the conversion efficiency of formate production. The findings not only introduce a metal sulfide catalyst system combining high activity and stability for ECO<small><sub>2</sub></small>RR but also provide fundamental structural insights for the rational design of advanced CO<small><sub>2</sub></small> conversion electrocatalysts.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 13","pages":" 3677-3685"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphologically engineered S-InxZny bimetallic catalysts via an ionothermal approach for enhanced carbon dioxide electroreduction to formate†\",\"authors\":\"Xiaoyu Chen, Jie Liu, Shuoshuo Feng, Yanhong Zou, Kai Wu, Fanghua Ning, Jin Yi and Yuyu Liu\",\"doi\":\"10.1039/D5SE00596E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The conversion of carbon dioxide through electrochemical reduction (ECO<small><sub>2</sub></small>RR) offers a promising pathway for sustainable carbon cycling, yet the development of efficient catalysts remains challenged by the trade-off between activity and stability. Herein, we report a sulfur-modulated In–Zn bimetallic sulfide catalyst (S-In<small><sub>0.5</sub></small>Zn<small><sub>1</sub></small>) that achieves highly selective CO<small><sub>2</sub></small>-to-formate conversion <em>via</em> morphological engineering. The optimized catalyst demonstrates exceptional performance with a maximum formate faradaic efficiency (FE) of 95.2% at −1.36 V <em>vs.</em> RHE, coupled with outstanding long-term stability exceeding 80 hours. Systematic investigations reveal that Zn incorporation induces a microstructural reconstruction, forming a hierarchical nanoparticle-lamellar composite architecture. This unique morphology significantly enhances the specific surface area and establishes efficient mass transport pathways, effectively mitigating diffusion limitations for both CO<small><sub>2</sub></small> reactants and critical *OCHO intermediates during electrocatalysis. The resultant reduction in kinetic barriers substantially improves the conversion efficiency of formate production. The findings not only introduce a metal sulfide catalyst system combining high activity and stability for ECO<small><sub>2</sub></small>RR but also provide fundamental structural insights for the rational design of advanced CO<small><sub>2</sub></small> conversion electrocatalysts.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 13\",\"pages\":\" 3677-3685\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00596e\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00596e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过电化学还原(ECO2RR)将二氧化碳转化为可持续的碳循环提供了一条有希望的途径,但高效催化剂的开发仍然受到活性和稳定性之间权衡的挑战。在此,我们报道了一种硫调制In-Zn双金属硫化物催化剂(S-In0.5Zn1),该催化剂通过形态工程实现了高选择性的co2到甲酸酯的转化。优化后的催化剂表现出优异的性能,在−1.36 V时,甲酸法拉第效率(FE)达到95.2%,并且具有超过80小时的长期稳定性。系统的研究表明,锌的掺入引起了微观结构的重建,形成了层次化的纳米颗粒-层状复合结构。这种独特的形态显著提高了比表面积,建立了有效的质量传递途径,有效地减轻了电催化过程中CO2反应物和关键OCHO中间体的扩散限制。由此产生的动力学障碍的降低大大提高了甲酸酯生产的转化效率。这一发现不仅为ECO2RR提供了一种高活性和稳定性的金属硫化物催化剂体系,而且为合理设计先进的CO2转化电催化剂提供了基本的结构见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Morphologically engineered S-InxZny bimetallic catalysts via an ionothermal approach for enhanced carbon dioxide electroreduction to formate†

Morphologically engineered S-InxZny bimetallic catalysts via an ionothermal approach for enhanced carbon dioxide electroreduction to formate†

The conversion of carbon dioxide through electrochemical reduction (ECO2RR) offers a promising pathway for sustainable carbon cycling, yet the development of efficient catalysts remains challenged by the trade-off between activity and stability. Herein, we report a sulfur-modulated In–Zn bimetallic sulfide catalyst (S-In0.5Zn1) that achieves highly selective CO2-to-formate conversion via morphological engineering. The optimized catalyst demonstrates exceptional performance with a maximum formate faradaic efficiency (FE) of 95.2% at −1.36 V vs. RHE, coupled with outstanding long-term stability exceeding 80 hours. Systematic investigations reveal that Zn incorporation induces a microstructural reconstruction, forming a hierarchical nanoparticle-lamellar composite architecture. This unique morphology significantly enhances the specific surface area and establishes efficient mass transport pathways, effectively mitigating diffusion limitations for both CO2 reactants and critical *OCHO intermediates during electrocatalysis. The resultant reduction in kinetic barriers substantially improves the conversion efficiency of formate production. The findings not only introduce a metal sulfide catalyst system combining high activity and stability for ECO2RR but also provide fundamental structural insights for the rational design of advanced CO2 conversion electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信