RoboMT:通过双边机器人远程操作和混合曼巴变压器框架装配的类人合规控制

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Wang Rundong;Cheng Yanchun;Yuan Qilong;Prakash Alok;Francis EH Tay;Marcelo H. Ang
{"title":"RoboMT:通过双边机器人远程操作和混合曼巴变压器框架装配的类人合规控制","authors":"Wang Rundong;Cheng Yanchun;Yuan Qilong;Prakash Alok;Francis EH Tay;Marcelo H. Ang","doi":"10.1109/LRA.2025.3579238","DOIUrl":null,"url":null,"abstract":"Robotic compliance control is critical for delicate tasks such as electronic connector assembly, where precise force regulation and adaptability are paramount. However, traditional methods often struggle with modeling inaccuracies and sensor noise. Inspired by human adaptability in complex assembly operations, we present RoboMT, a novel framework that integrates a Mamba algorithm with a Transformer architecture to achieve human-like compliance control. By leveraging a bilateral teleoperation platform, we collect extensive real-time force/torque and motion data to form a comprehensive dataset for training. Furthermore, RoboMT incorporates an Adaptive Action Chunk module and a Temporal Fusion module to ensure smooth and robust action prediction. Experimental results across four electronic assembly tasks show that RoboMT achieves superior success rates (62–98%) over baselines (29–98%), while maintaining stable force regulation around 2.5 N, closely resembling human performance. During task transitions, RoboMT quickly stabilizes at 5 N with minimal overshoot, avoiding the large force spikes (over 24 N) seen in baselines. Additionally, RoboMT maintains an average inference speed of 55 ms per batch, balancing real-time responsiveness and control robustness. Overall, RoboMT presents a compelling pathway toward error-minimized, human-level compliance control, and generalization for real-world robotic assembly, setting a new benchmark for precision, adaptability, and robustness in robotic assembly.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 8","pages":"7771-7778"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RoboMT: Human-Like Compliance Control for Assembly via a Bilateral Robotic Teleoperation and Hybrid Mamba-Transformer Framework\",\"authors\":\"Wang Rundong;Cheng Yanchun;Yuan Qilong;Prakash Alok;Francis EH Tay;Marcelo H. Ang\",\"doi\":\"10.1109/LRA.2025.3579238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic compliance control is critical for delicate tasks such as electronic connector assembly, where precise force regulation and adaptability are paramount. However, traditional methods often struggle with modeling inaccuracies and sensor noise. Inspired by human adaptability in complex assembly operations, we present RoboMT, a novel framework that integrates a Mamba algorithm with a Transformer architecture to achieve human-like compliance control. By leveraging a bilateral teleoperation platform, we collect extensive real-time force/torque and motion data to form a comprehensive dataset for training. Furthermore, RoboMT incorporates an Adaptive Action Chunk module and a Temporal Fusion module to ensure smooth and robust action prediction. Experimental results across four electronic assembly tasks show that RoboMT achieves superior success rates (62–98%) over baselines (29–98%), while maintaining stable force regulation around 2.5 N, closely resembling human performance. During task transitions, RoboMT quickly stabilizes at 5 N with minimal overshoot, avoiding the large force spikes (over 24 N) seen in baselines. Additionally, RoboMT maintains an average inference speed of 55 ms per batch, balancing real-time responsiveness and control robustness. Overall, RoboMT presents a compelling pathway toward error-minimized, human-level compliance control, and generalization for real-world robotic assembly, setting a new benchmark for precision, adaptability, and robustness in robotic assembly.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 8\",\"pages\":\"7771-7778\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11037245/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11037245/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

机器人的顺应性控制对于电子连接器组装等精细任务至关重要,其中精确的力调节和适应性至关重要。然而,传统的方法往往与建模不准确和传感器噪声作斗争。受人类在复杂装配操作中的适应性的启发,我们提出了RoboMT,一个将Mamba算法与Transformer架构集成在一起的新框架,以实现类似人类的合规控制。通过利用双边远程操作平台,我们收集了大量的实时力/扭矩和运动数据,形成了一个全面的训练数据集。此外,RoboMT结合了自适应动作块模块和时间融合模块,以确保平滑和鲁棒的动作预测。四项电子组装任务的实验结果表明,RoboMT的成功率(62-98%)高于基线(29-98%),同时保持稳定的力调节在2.5 N左右,与人类的表现非常相似。在任务转换过程中,RoboMT快速稳定在5牛,最小的超调,避免了基线中看到的大的力峰值(超过24牛)。此外,RoboMT保持每批55毫秒的平均推理速度,平衡实时响应性和控制鲁棒性。总的来说,RoboMT提出了一个引人注目的途径,以减少错误,人类水平的顺应性控制,并推广到现实世界的机器人装配,为机器人装配的精度,适应性和鲁棒性设定了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RoboMT: Human-Like Compliance Control for Assembly via a Bilateral Robotic Teleoperation and Hybrid Mamba-Transformer Framework
Robotic compliance control is critical for delicate tasks such as electronic connector assembly, where precise force regulation and adaptability are paramount. However, traditional methods often struggle with modeling inaccuracies and sensor noise. Inspired by human adaptability in complex assembly operations, we present RoboMT, a novel framework that integrates a Mamba algorithm with a Transformer architecture to achieve human-like compliance control. By leveraging a bilateral teleoperation platform, we collect extensive real-time force/torque and motion data to form a comprehensive dataset for training. Furthermore, RoboMT incorporates an Adaptive Action Chunk module and a Temporal Fusion module to ensure smooth and robust action prediction. Experimental results across four electronic assembly tasks show that RoboMT achieves superior success rates (62–98%) over baselines (29–98%), while maintaining stable force regulation around 2.5 N, closely resembling human performance. During task transitions, RoboMT quickly stabilizes at 5 N with minimal overshoot, avoiding the large force spikes (over 24 N) seen in baselines. Additionally, RoboMT maintains an average inference speed of 55 ms per batch, balancing real-time responsiveness and control robustness. Overall, RoboMT presents a compelling pathway toward error-minimized, human-level compliance control, and generalization for real-world robotic assembly, setting a new benchmark for precision, adaptability, and robustness in robotic assembly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信