一种系统尺度自适应小信号稳定性评估的可解释混合图池化方案

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiyu Huang , Waisheng Zheng , Yiping Chen , Yongzhe Li , Liukai Chen
{"title":"一种系统尺度自适应小信号稳定性评估的可解释混合图池化方案","authors":"Jiyu Huang ,&nbsp;Waisheng Zheng ,&nbsp;Yiping Chen ,&nbsp;Yongzhe Li ,&nbsp;Liukai Chen","doi":"10.1016/j.ijepes.2025.110815","DOIUrl":null,"url":null,"abstract":"<div><div>Aimed at increasingly challenging operation conditions in modern power systems, online small-signal stability assessment (SSA) acts as a significant tool to detect latent oscillation risks and provide abundant information for preventive controls. Existing machine learning-based SSA methods fail under small system-scale changes and encounter efficiency loss when applied to large-scale systems. The model inference lacks enough interpretability for preventive controls. In this paper, we propose an <u>I</u>nterpretable hyb<u>R</u>id gr<u>A</u>ph <u>P</u>ooling-based SSA scheme (IRAP-SSA) with excellent robustness against system-scale changes. A sparse edge contraction-based attention pooling (ECAP) is stacked to dynamically simplify the network structure without loss of representation differences. A spectral graph pooling (SGP) module works to generate fixed-dimensional area representations. The advocated <u>I</u>nterpretable <u>M</u>odules with <u>P</u>ost-<u>H</u>oc <u>I</u>nterpretation (IM-PHI) unveil the rationality of the system-scale robustness and discriminate vulnerable areas and dominant generators for operators. The performance as well as interpretability and generalization of our scheme are validated on the IEEE 39 Bus system and the IEEE 118 Bus system under various operation topologies and system scales.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"170 ","pages":"Article 110815"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interpretable hybrid graph pooling scheme for system-scale adaptive small-signal stability assessment\",\"authors\":\"Jiyu Huang ,&nbsp;Waisheng Zheng ,&nbsp;Yiping Chen ,&nbsp;Yongzhe Li ,&nbsp;Liukai Chen\",\"doi\":\"10.1016/j.ijepes.2025.110815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aimed at increasingly challenging operation conditions in modern power systems, online small-signal stability assessment (SSA) acts as a significant tool to detect latent oscillation risks and provide abundant information for preventive controls. Existing machine learning-based SSA methods fail under small system-scale changes and encounter efficiency loss when applied to large-scale systems. The model inference lacks enough interpretability for preventive controls. In this paper, we propose an <u>I</u>nterpretable hyb<u>R</u>id gr<u>A</u>ph <u>P</u>ooling-based SSA scheme (IRAP-SSA) with excellent robustness against system-scale changes. A sparse edge contraction-based attention pooling (ECAP) is stacked to dynamically simplify the network structure without loss of representation differences. A spectral graph pooling (SGP) module works to generate fixed-dimensional area representations. The advocated <u>I</u>nterpretable <u>M</u>odules with <u>P</u>ost-<u>H</u>oc <u>I</u>nterpretation (IM-PHI) unveil the rationality of the system-scale robustness and discriminate vulnerable areas and dominant generators for operators. The performance as well as interpretability and generalization of our scheme are validated on the IEEE 39 Bus system and the IEEE 118 Bus system under various operation topologies and system scales.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"170 \",\"pages\":\"Article 110815\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061525003631\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525003631","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

针对现代电力系统日益严峻的运行条件,在线小信号稳定性评估(SSA)是检测潜在振荡风险并为预防控制提供丰富信息的重要工具。现有的基于机器学习的SSA方法在小系统规模的变化下失效,在应用于大系统时会遇到效率损失。模型推理对预防性控制缺乏足够的可解释性。在本文中,我们提出了一种基于可解释混合图池的SSA方案(IRAP-SSA),该方案对系统规模的变化具有出色的鲁棒性。利用基于稀疏边缘收缩的注意力池(ECAP)来动态简化网络结构,同时不损失表征差异。光谱图池化(SGP)模块用于生成固定维的区域表示。所提倡的具有事后解释的可解释模块(IM-PHI)揭示了系统尺度鲁棒性的合理性,并为运营商区分脆弱区域和优势生成器。在IEEE 39总线系统和IEEE 118总线系统上,在不同的操作拓扑和系统规模下,验证了该方案的性能、可解释性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An interpretable hybrid graph pooling scheme for system-scale adaptive small-signal stability assessment
Aimed at increasingly challenging operation conditions in modern power systems, online small-signal stability assessment (SSA) acts as a significant tool to detect latent oscillation risks and provide abundant information for preventive controls. Existing machine learning-based SSA methods fail under small system-scale changes and encounter efficiency loss when applied to large-scale systems. The model inference lacks enough interpretability for preventive controls. In this paper, we propose an Interpretable hybRid grAph Pooling-based SSA scheme (IRAP-SSA) with excellent robustness against system-scale changes. A sparse edge contraction-based attention pooling (ECAP) is stacked to dynamically simplify the network structure without loss of representation differences. A spectral graph pooling (SGP) module works to generate fixed-dimensional area representations. The advocated Interpretable Modules with Post-Hoc Interpretation (IM-PHI) unveil the rationality of the system-scale robustness and discriminate vulnerable areas and dominant generators for operators. The performance as well as interpretability and generalization of our scheme are validated on the IEEE 39 Bus system and the IEEE 118 Bus system under various operation topologies and system scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信