新型Z-scheme BiOCl/g-C3N4纳米复合材料的高效光催化降解有机污染物及载流子动力学研究

Q1 Environmental Science
Orawan Rojviroon , Gomathi Abimannan , Priyadharsan Arumugam , Maadeswaran Palanisamy , Ranjith Rajendran , Govarthini Ramasamy , Sanya Sirivithayapakorn , Natacha Phetyim , Thammasak Rojviroon
{"title":"新型Z-scheme BiOCl/g-C3N4纳米复合材料的高效光催化降解有机污染物及载流子动力学研究","authors":"Orawan Rojviroon ,&nbsp;Gomathi Abimannan ,&nbsp;Priyadharsan Arumugam ,&nbsp;Maadeswaran Palanisamy ,&nbsp;Ranjith Rajendran ,&nbsp;Govarthini Ramasamy ,&nbsp;Sanya Sirivithayapakorn ,&nbsp;Natacha Phetyim ,&nbsp;Thammasak Rojviroon","doi":"10.1016/j.enmm.2025.101086","DOIUrl":null,"url":null,"abstract":"<div><div>In this research work, Z scheme BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite was synthesized through hydrothermal process and combined with thermal decomposition method. Numerous characterization techniques were utilized to examine the phase structure, functional groups, morphology, elemental composition, electronic structure and optical behaviour of as synthesized materials. The boosted light absorption capability of BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite which is accredited to the synergetic interaction between the BiOCl and g-C<sub>3</sub>N<sub>4</sub> materials. The photocatalytic degradation efficacy of BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite over Rhodamine B (RhB) textile pollutant was exhibited 97 % within 100 min which is higher than the pristine BiOCl material. It’s caused by the active separation, allocation of electrons and holes and reduce the recombination. Five successive recycle process proved the stability and reusability of the material. Finally, This work demonstrates an enriched Z scheme BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite will deliver the impression of construct the Z scheme heterojunction photocatalyst to augment the photocatalytic activity in the occurrence of visible light.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"24 ","pages":"Article 101086"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Z-scheme BiOCl/g-C3N4 nanocomposite for high performance photocatalytic degradation of organic pollutants and charge carrier dynamics\",\"authors\":\"Orawan Rojviroon ,&nbsp;Gomathi Abimannan ,&nbsp;Priyadharsan Arumugam ,&nbsp;Maadeswaran Palanisamy ,&nbsp;Ranjith Rajendran ,&nbsp;Govarthini Ramasamy ,&nbsp;Sanya Sirivithayapakorn ,&nbsp;Natacha Phetyim ,&nbsp;Thammasak Rojviroon\",\"doi\":\"10.1016/j.enmm.2025.101086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this research work, Z scheme BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite was synthesized through hydrothermal process and combined with thermal decomposition method. Numerous characterization techniques were utilized to examine the phase structure, functional groups, morphology, elemental composition, electronic structure and optical behaviour of as synthesized materials. The boosted light absorption capability of BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite which is accredited to the synergetic interaction between the BiOCl and g-C<sub>3</sub>N<sub>4</sub> materials. The photocatalytic degradation efficacy of BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite over Rhodamine B (RhB) textile pollutant was exhibited 97 % within 100 min which is higher than the pristine BiOCl material. It’s caused by the active separation, allocation of electrons and holes and reduce the recombination. Five successive recycle process proved the stability and reusability of the material. Finally, This work demonstrates an enriched Z scheme BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite will deliver the impression of construct the Z scheme heterojunction photocatalyst to augment the photocatalytic activity in the occurrence of visible light.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"24 \",\"pages\":\"Article 101086\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153225000479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用水热法结合热分解法合成了Z型BiOCl/g-C3N4纳米复合材料。许多表征技术被用于检测合成材料的相结构、官能团、形态、元素组成、电子结构和光学行为。BiOCl/g-C3N4纳米复合材料的光吸收能力增强是由于BiOCl和g-C3N4材料之间的协同作用。在100 min内,BiOCl/g-C3N4纳米复合材料对罗丹明B (Rhodamine B, RhB)纺织污染物的光催化降解效率达到97%,高于原始BiOCl材料。它是由电子和空穴的主动分离、分配和减少复合引起的。连续五次的回收过程证明了材料的稳定性和可重复使用性。最后,本研究证明了富含Z方案的BiOCl/g-C3N4纳米复合材料将提供构建Z方案异质结光催化剂的效果,以增强可见光发生时的光催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Novel Z-scheme BiOCl/g-C3N4 nanocomposite for high performance photocatalytic degradation of organic pollutants and charge carrier dynamics

Novel Z-scheme BiOCl/g-C3N4 nanocomposite for high performance photocatalytic degradation of organic pollutants and charge carrier dynamics
In this research work, Z scheme BiOCl/g-C3N4 nanocomposite was synthesized through hydrothermal process and combined with thermal decomposition method. Numerous characterization techniques were utilized to examine the phase structure, functional groups, morphology, elemental composition, electronic structure and optical behaviour of as synthesized materials. The boosted light absorption capability of BiOCl/g-C3N4 nanocomposite which is accredited to the synergetic interaction between the BiOCl and g-C3N4 materials. The photocatalytic degradation efficacy of BiOCl/g-C3N4 nanocomposite over Rhodamine B (RhB) textile pollutant was exhibited 97 % within 100 min which is higher than the pristine BiOCl material. It’s caused by the active separation, allocation of electrons and holes and reduce the recombination. Five successive recycle process proved the stability and reusability of the material. Finally, This work demonstrates an enriched Z scheme BiOCl/g-C3N4 nanocomposite will deliver the impression of construct the Z scheme heterojunction photocatalyst to augment the photocatalytic activity in the occurrence of visible light.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信