{"title":"3d打印义齿基托树脂表面特性对生物反应和生物膜形成的影响:体外研究","authors":"Chien-Fu Tseng , Chia-Chih Sung , Ya-Ting Yang , Fen-Ni Chen , Yuichi Mine , Yao-Chang Chiang , Zih-Chan Lin , Mei-Ling Fang , Hsin-Ming Chen , Sang-Heng Kok , Tzu-Yu Peng","doi":"10.1016/j.jds.2025.03.027","DOIUrl":null,"url":null,"abstract":"<div><h3>Background/purpose</h3><div>With advancements in digital technology, fully digital workflow for complete denture fabrication using 3D-printed denture base resin (DBR) has gained increasing clinical acceptance in recent years. However, the surface characteristics, biocompatibility, and biofilm formation of 3D-printed DBR materials remain insufficiently understood. Therefore, in this study, we investigated and analyzed these aspects.</div></div><div><h3>Materials and methods</h3><div>Disk-shaped DBR specimens (Ø 2.5 mm, 3 mm thick) were fabricated using packed (PA), milled (ML), and 3D-printed (3D) processes. All specimens were ground with silicon carbide sandpaper (#600) and ultrasonically cleaned. Surface microtopography and sub-micron roughness were analyzed using scanning electron microscopy and atomic force microscopy, while a goniometer was used to measure contact angles to calculate the surface energy. Human gingival fibroblasts and <em>Aggregatibacter actinomycetemcomitans</em> were cultured on the specimens to assess the cytotoxicity and biofilm formation. Statistical analyses were performed with a significance level set to 0.05.</div></div><div><h3>Results</h3><div>Microscopic imaging revealed that the 3D group exhibited a more uniformly distributed texture, while it also had the lowest surface roughness (0.85 μm). Additionally, the PA group had the most hydrophobic surface (82.47°) and the highest surface free energy (46.08 mN/m). Notably, no group showed cytotoxic effects after 72 h of testing. In addition, the 3D group demonstrated the lowest biofilm formation after both 24 h and 72 h of microbial culture.</div></div><div><h3>Conclusion</h3><div>3D-printed DBRs exhibited the lowest surface roughness, maintaining non-cytotoxic and superior resistance to microbial adhesion, suggesting their potential for complete denture fabrication, easy maintenance of oral hygiene, and long-term clinical performance.</div></div>","PeriodicalId":15583,"journal":{"name":"Journal of Dental Sciences","volume":"20 3","pages":"Pages 1716-1722"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of surface characteristics on biological responses and biofilm formation of 3D-printed denture base resins: An in vitro study\",\"authors\":\"Chien-Fu Tseng , Chia-Chih Sung , Ya-Ting Yang , Fen-Ni Chen , Yuichi Mine , Yao-Chang Chiang , Zih-Chan Lin , Mei-Ling Fang , Hsin-Ming Chen , Sang-Heng Kok , Tzu-Yu Peng\",\"doi\":\"10.1016/j.jds.2025.03.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background/purpose</h3><div>With advancements in digital technology, fully digital workflow for complete denture fabrication using 3D-printed denture base resin (DBR) has gained increasing clinical acceptance in recent years. However, the surface characteristics, biocompatibility, and biofilm formation of 3D-printed DBR materials remain insufficiently understood. Therefore, in this study, we investigated and analyzed these aspects.</div></div><div><h3>Materials and methods</h3><div>Disk-shaped DBR specimens (Ø 2.5 mm, 3 mm thick) were fabricated using packed (PA), milled (ML), and 3D-printed (3D) processes. All specimens were ground with silicon carbide sandpaper (#600) and ultrasonically cleaned. Surface microtopography and sub-micron roughness were analyzed using scanning electron microscopy and atomic force microscopy, while a goniometer was used to measure contact angles to calculate the surface energy. Human gingival fibroblasts and <em>Aggregatibacter actinomycetemcomitans</em> were cultured on the specimens to assess the cytotoxicity and biofilm formation. Statistical analyses were performed with a significance level set to 0.05.</div></div><div><h3>Results</h3><div>Microscopic imaging revealed that the 3D group exhibited a more uniformly distributed texture, while it also had the lowest surface roughness (0.85 μm). Additionally, the PA group had the most hydrophobic surface (82.47°) and the highest surface free energy (46.08 mN/m). Notably, no group showed cytotoxic effects after 72 h of testing. In addition, the 3D group demonstrated the lowest biofilm formation after both 24 h and 72 h of microbial culture.</div></div><div><h3>Conclusion</h3><div>3D-printed DBRs exhibited the lowest surface roughness, maintaining non-cytotoxic and superior resistance to microbial adhesion, suggesting their potential for complete denture fabrication, easy maintenance of oral hygiene, and long-term clinical performance.</div></div>\",\"PeriodicalId\":15583,\"journal\":{\"name\":\"Journal of Dental Sciences\",\"volume\":\"20 3\",\"pages\":\"Pages 1716-1722\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dental Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S199179022500100X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S199179022500100X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Impacts of surface characteristics on biological responses and biofilm formation of 3D-printed denture base resins: An in vitro study
Background/purpose
With advancements in digital technology, fully digital workflow for complete denture fabrication using 3D-printed denture base resin (DBR) has gained increasing clinical acceptance in recent years. However, the surface characteristics, biocompatibility, and biofilm formation of 3D-printed DBR materials remain insufficiently understood. Therefore, in this study, we investigated and analyzed these aspects.
Materials and methods
Disk-shaped DBR specimens (Ø 2.5 mm, 3 mm thick) were fabricated using packed (PA), milled (ML), and 3D-printed (3D) processes. All specimens were ground with silicon carbide sandpaper (#600) and ultrasonically cleaned. Surface microtopography and sub-micron roughness were analyzed using scanning electron microscopy and atomic force microscopy, while a goniometer was used to measure contact angles to calculate the surface energy. Human gingival fibroblasts and Aggregatibacter actinomycetemcomitans were cultured on the specimens to assess the cytotoxicity and biofilm formation. Statistical analyses were performed with a significance level set to 0.05.
Results
Microscopic imaging revealed that the 3D group exhibited a more uniformly distributed texture, while it also had the lowest surface roughness (0.85 μm). Additionally, the PA group had the most hydrophobic surface (82.47°) and the highest surface free energy (46.08 mN/m). Notably, no group showed cytotoxic effects after 72 h of testing. In addition, the 3D group demonstrated the lowest biofilm formation after both 24 h and 72 h of microbial culture.
Conclusion
3D-printed DBRs exhibited the lowest surface roughness, maintaining non-cytotoxic and superior resistance to microbial adhesion, suggesting their potential for complete denture fabrication, easy maintenance of oral hygiene, and long-term clinical performance.
期刊介绍:
he Journal of Dental Sciences (JDS), published quarterly, is the official and open access publication of the Association for Dental Sciences of the Republic of China (ADS-ROC). The precedent journal of the JDS is the Chinese Dental Journal (CDJ) which had already been covered by MEDLINE in 1988. As the CDJ continued to prove its importance in the region, the ADS-ROC decided to move to the international community by publishing an English journal. Hence, the birth of the JDS in 2006. The JDS is indexed in the SCI Expanded since 2008. It is also indexed in Scopus, and EMCare, ScienceDirect, SIIC Data Bases.
The topics covered by the JDS include all fields of basic and clinical dentistry. Some manuscripts focusing on the study of certain endemic diseases such as dental caries and periodontal diseases in particular regions of any country as well as oral pre-cancers, oral cancers, and oral submucous fibrosis related to betel nut chewing habit are also considered for publication. Besides, the JDS also publishes articles about the efficacy of a new treatment modality on oral verrucous hyperplasia or early oral squamous cell carcinoma.