Yanan Xing , Yanru An , Tian Tian , Li Pu , Zhigang Lu , Ning Liang , Longqi Liu , Zhouchun Shang
{"title":"单细胞空间转录组学揭示吡喹莫德致狼疮性肾炎小鼠肾纤维化的致病机制","authors":"Yanan Xing , Yanru An , Tian Tian , Li Pu , Zhigang Lu , Ning Liang , Longqi Liu , Zhouchun Shang","doi":"10.1016/j.bbrep.2025.102087","DOIUrl":null,"url":null,"abstract":"<div><div>A deeper understanding of the cellular and molecular pathology pathways of renal fibrosis in lupus nephritis (LN) is essential for the accurate disease assessment and the development of novel therapeutic strategies. In this study, we employed advanced spatial transcriptomics technique to elucidate the underlying mechanism of renal fibrosis in mouse kidneys. By establishing single-nuclei and spatial transcriptomic maps for LN and control kidneys, we identified a significant activation and proliferation of fibroblasts predominantly in the inner stripe of outer medulla (ISOM) region and pinpointed a set of specific gene signatures associated with fibrosis. Furthermore, we discovered a class of pro-fibrotic macrophage subtype, Lyz2 macrophage, that promotes myofibroblast activation. We elucidated the intricate molecular interplay mechanisms involved in this process. Our study also delved into the glomerular region, revealed disease-induced alterations in gene expression and identified potential novel therapeutic targets.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"43 ","pages":"Article 102087"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell spatial transcriptomics reveals pathogenic mechanism of renal fibrosis in imiquimod-induced lupus nephritis in mice\",\"authors\":\"Yanan Xing , Yanru An , Tian Tian , Li Pu , Zhigang Lu , Ning Liang , Longqi Liu , Zhouchun Shang\",\"doi\":\"10.1016/j.bbrep.2025.102087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A deeper understanding of the cellular and molecular pathology pathways of renal fibrosis in lupus nephritis (LN) is essential for the accurate disease assessment and the development of novel therapeutic strategies. In this study, we employed advanced spatial transcriptomics technique to elucidate the underlying mechanism of renal fibrosis in mouse kidneys. By establishing single-nuclei and spatial transcriptomic maps for LN and control kidneys, we identified a significant activation and proliferation of fibroblasts predominantly in the inner stripe of outer medulla (ISOM) region and pinpointed a set of specific gene signatures associated with fibrosis. Furthermore, we discovered a class of pro-fibrotic macrophage subtype, Lyz2 macrophage, that promotes myofibroblast activation. We elucidated the intricate molecular interplay mechanisms involved in this process. Our study also delved into the glomerular region, revealed disease-induced alterations in gene expression and identified potential novel therapeutic targets.</div></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":\"43 \",\"pages\":\"Article 102087\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580825001748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Single-cell spatial transcriptomics reveals pathogenic mechanism of renal fibrosis in imiquimod-induced lupus nephritis in mice
A deeper understanding of the cellular and molecular pathology pathways of renal fibrosis in lupus nephritis (LN) is essential for the accurate disease assessment and the development of novel therapeutic strategies. In this study, we employed advanced spatial transcriptomics technique to elucidate the underlying mechanism of renal fibrosis in mouse kidneys. By establishing single-nuclei and spatial transcriptomic maps for LN and control kidneys, we identified a significant activation and proliferation of fibroblasts predominantly in the inner stripe of outer medulla (ISOM) region and pinpointed a set of specific gene signatures associated with fibrosis. Furthermore, we discovered a class of pro-fibrotic macrophage subtype, Lyz2 macrophage, that promotes myofibroblast activation. We elucidated the intricate molecular interplay mechanisms involved in this process. Our study also delved into the glomerular region, revealed disease-induced alterations in gene expression and identified potential novel therapeutic targets.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.