Yuqi Huang , Chao Shen , Chunguang Cai , Wenzhi Zhu , Yongqi Liang , Soteris A. Kalogirou , Julian Wang
{"title":"用于光伏窗的半透明钙钛矿太阳能电池组件的制造、效率损失分析和基于仿真的优化","authors":"Yuqi Huang , Chao Shen , Chunguang Cai , Wenzhi Zhu , Yongqi Liang , Soteris A. Kalogirou , Julian Wang","doi":"10.1016/j.solener.2025.113721","DOIUrl":null,"url":null,"abstract":"<div><div>The urgent demand for carbon neutrality in buildings has propelled semi-transparent photovoltaic windows to become a pivotal component of Building Integrated Photovoltaics technology. Despite the unique advantages of perovskite materials, such as tunable bandgap, high absorption coefficient, and solution processability, their practical application is hindered by significant efficiency degradation during large-area fabrication. This study proposes a multi-scale collaborative manufacturing strategy, integrating air-knife blade coating, magnetron sputtering, and pulsed laser etching, to successfully fabricate a 25 cm<sup>2</sup> semi-transparent perovskite solar cell module (ST-PSCM). The module achieves a 27.2 % average visible light transmittance (AVT), a 2.44 % power conversion efficiency (PCE), and a color rendering index of 82, meeting the functional requirements for building applications. Through a circuit quantification model that incorporates radiative recombination, non-radiative recombination, and resistive losses, the study identifies bulk recombination (65.17 %) and series resistance losses (29.53 %) as the primary mechanisms of efficiency loss. Furthermore, leveraging the Solar Design optoelectronic coupling simulation platform, the temperature and light intensity response characteristics of the ST-PSCM were systematically analyzed. Through a layer-by-layer optimization of thicknesses of each functional layer, the module achieved a PCE of 2.80 % at 38.3 % AVT. This study provides a scalable manufacturing approach for the large-scale application of semi-transparent perovskite photovoltaic windows, offering significant practical value for advancing the development of near-zero energy building technologies.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113721"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication, efficiency loss analysis, and simulation-based optimization of semi-transparent perovskite solar cell modules for photovoltaic windows\",\"authors\":\"Yuqi Huang , Chao Shen , Chunguang Cai , Wenzhi Zhu , Yongqi Liang , Soteris A. Kalogirou , Julian Wang\",\"doi\":\"10.1016/j.solener.2025.113721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The urgent demand for carbon neutrality in buildings has propelled semi-transparent photovoltaic windows to become a pivotal component of Building Integrated Photovoltaics technology. Despite the unique advantages of perovskite materials, such as tunable bandgap, high absorption coefficient, and solution processability, their practical application is hindered by significant efficiency degradation during large-area fabrication. This study proposes a multi-scale collaborative manufacturing strategy, integrating air-knife blade coating, magnetron sputtering, and pulsed laser etching, to successfully fabricate a 25 cm<sup>2</sup> semi-transparent perovskite solar cell module (ST-PSCM). The module achieves a 27.2 % average visible light transmittance (AVT), a 2.44 % power conversion efficiency (PCE), and a color rendering index of 82, meeting the functional requirements for building applications. Through a circuit quantification model that incorporates radiative recombination, non-radiative recombination, and resistive losses, the study identifies bulk recombination (65.17 %) and series resistance losses (29.53 %) as the primary mechanisms of efficiency loss. Furthermore, leveraging the Solar Design optoelectronic coupling simulation platform, the temperature and light intensity response characteristics of the ST-PSCM were systematically analyzed. Through a layer-by-layer optimization of thicknesses of each functional layer, the module achieved a PCE of 2.80 % at 38.3 % AVT. This study provides a scalable manufacturing approach for the large-scale application of semi-transparent perovskite photovoltaic windows, offering significant practical value for advancing the development of near-zero energy building technologies.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"299 \",\"pages\":\"Article 113721\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25004840\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25004840","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Fabrication, efficiency loss analysis, and simulation-based optimization of semi-transparent perovskite solar cell modules for photovoltaic windows
The urgent demand for carbon neutrality in buildings has propelled semi-transparent photovoltaic windows to become a pivotal component of Building Integrated Photovoltaics technology. Despite the unique advantages of perovskite materials, such as tunable bandgap, high absorption coefficient, and solution processability, their practical application is hindered by significant efficiency degradation during large-area fabrication. This study proposes a multi-scale collaborative manufacturing strategy, integrating air-knife blade coating, magnetron sputtering, and pulsed laser etching, to successfully fabricate a 25 cm2 semi-transparent perovskite solar cell module (ST-PSCM). The module achieves a 27.2 % average visible light transmittance (AVT), a 2.44 % power conversion efficiency (PCE), and a color rendering index of 82, meeting the functional requirements for building applications. Through a circuit quantification model that incorporates radiative recombination, non-radiative recombination, and resistive losses, the study identifies bulk recombination (65.17 %) and series resistance losses (29.53 %) as the primary mechanisms of efficiency loss. Furthermore, leveraging the Solar Design optoelectronic coupling simulation platform, the temperature and light intensity response characteristics of the ST-PSCM were systematically analyzed. Through a layer-by-layer optimization of thicknesses of each functional layer, the module achieved a PCE of 2.80 % at 38.3 % AVT. This study provides a scalable manufacturing approach for the large-scale application of semi-transparent perovskite photovoltaic windows, offering significant practical value for advancing the development of near-zero energy building technologies.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass