用于光伏窗的半透明钙钛矿太阳能电池组件的制造、效率损失分析和基于仿真的优化

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Yuqi Huang , Chao Shen , Chunguang Cai , Wenzhi Zhu , Yongqi Liang , Soteris A. Kalogirou , Julian Wang
{"title":"用于光伏窗的半透明钙钛矿太阳能电池组件的制造、效率损失分析和基于仿真的优化","authors":"Yuqi Huang ,&nbsp;Chao Shen ,&nbsp;Chunguang Cai ,&nbsp;Wenzhi Zhu ,&nbsp;Yongqi Liang ,&nbsp;Soteris A. Kalogirou ,&nbsp;Julian Wang","doi":"10.1016/j.solener.2025.113721","DOIUrl":null,"url":null,"abstract":"<div><div>The urgent demand for carbon neutrality in buildings has propelled semi-transparent photovoltaic windows to become a pivotal component of Building Integrated Photovoltaics technology. Despite the unique advantages of perovskite materials, such as tunable bandgap, high absorption coefficient, and solution processability, their practical application is hindered by significant efficiency degradation during large-area fabrication. This study proposes a multi-scale collaborative manufacturing strategy, integrating air-knife blade coating, magnetron sputtering, and pulsed laser etching, to successfully fabricate a 25 cm<sup>2</sup> semi-transparent perovskite solar cell module (ST-PSCM). The module achieves a 27.2 % average visible light transmittance (AVT), a 2.44 % power conversion efficiency (PCE), and a color rendering index of 82, meeting the functional requirements for building applications. Through a circuit quantification model that incorporates radiative recombination, non-radiative recombination, and resistive losses, the study identifies bulk recombination (65.17 %) and series resistance losses (29.53 %) as the primary mechanisms of efficiency loss. Furthermore, leveraging the Solar Design optoelectronic coupling simulation platform, the temperature and light intensity response characteristics of the ST-PSCM were systematically analyzed. Through a layer-by-layer optimization of thicknesses of each functional layer, the module achieved a PCE of 2.80 % at 38.3 % AVT. This study provides a scalable manufacturing approach for the large-scale application of semi-transparent perovskite photovoltaic windows, offering significant practical value for advancing the development of near-zero energy building technologies.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113721"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication, efficiency loss analysis, and simulation-based optimization of semi-transparent perovskite solar cell modules for photovoltaic windows\",\"authors\":\"Yuqi Huang ,&nbsp;Chao Shen ,&nbsp;Chunguang Cai ,&nbsp;Wenzhi Zhu ,&nbsp;Yongqi Liang ,&nbsp;Soteris A. Kalogirou ,&nbsp;Julian Wang\",\"doi\":\"10.1016/j.solener.2025.113721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The urgent demand for carbon neutrality in buildings has propelled semi-transparent photovoltaic windows to become a pivotal component of Building Integrated Photovoltaics technology. Despite the unique advantages of perovskite materials, such as tunable bandgap, high absorption coefficient, and solution processability, their practical application is hindered by significant efficiency degradation during large-area fabrication. This study proposes a multi-scale collaborative manufacturing strategy, integrating air-knife blade coating, magnetron sputtering, and pulsed laser etching, to successfully fabricate a 25 cm<sup>2</sup> semi-transparent perovskite solar cell module (ST-PSCM). The module achieves a 27.2 % average visible light transmittance (AVT), a 2.44 % power conversion efficiency (PCE), and a color rendering index of 82, meeting the functional requirements for building applications. Through a circuit quantification model that incorporates radiative recombination, non-radiative recombination, and resistive losses, the study identifies bulk recombination (65.17 %) and series resistance losses (29.53 %) as the primary mechanisms of efficiency loss. Furthermore, leveraging the Solar Design optoelectronic coupling simulation platform, the temperature and light intensity response characteristics of the ST-PSCM were systematically analyzed. Through a layer-by-layer optimization of thicknesses of each functional layer, the module achieved a PCE of 2.80 % at 38.3 % AVT. This study provides a scalable manufacturing approach for the large-scale application of semi-transparent perovskite photovoltaic windows, offering significant practical value for advancing the development of near-zero energy building technologies.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"299 \",\"pages\":\"Article 113721\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25004840\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25004840","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

建筑对碳中和的迫切需求推动了半透明光伏窗成为建筑集成光伏技术的关键组成部分。尽管钙钛矿材料具有独特的优势,如可调谐的带隙、高吸收系数和溶液可加工性,但它们的实际应用受到大面积制造过程中显著的效率下降的阻碍。本研究提出了一种多尺度协同制造策略,整合气刀刀片涂层、磁控溅射和脉冲激光刻蚀,成功制造了25 cm2的半透明钙钛矿太阳能电池组件(ST-PSCM)。该模块的平均可见光透过率(AVT)为27.2%,功率转换效率(PCE)为2.44%,显色指数为82,满足建筑应用的功能要求。通过一个包含辐射复合、非辐射复合和电阻损耗的电路量化模型,该研究确定了大块复合(65.17%)和串联电阻损耗(29.53%)是效率损失的主要机制。利用Solar Design光电耦合仿真平台,系统分析了ST-PSCM的温度和光强响应特性。通过对各功能层厚度的逐层优化,该模块在38.3% AVT下实现了2.80%的PCE。本研究为半透明钙钛矿光伏窗的大规模应用提供了一种可扩展的制造方法,对推进近零能耗建筑技术的发展具有重要的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication, efficiency loss analysis, and simulation-based optimization of semi-transparent perovskite solar cell modules for photovoltaic windows
The urgent demand for carbon neutrality in buildings has propelled semi-transparent photovoltaic windows to become a pivotal component of Building Integrated Photovoltaics technology. Despite the unique advantages of perovskite materials, such as tunable bandgap, high absorption coefficient, and solution processability, their practical application is hindered by significant efficiency degradation during large-area fabrication. This study proposes a multi-scale collaborative manufacturing strategy, integrating air-knife blade coating, magnetron sputtering, and pulsed laser etching, to successfully fabricate a 25 cm2 semi-transparent perovskite solar cell module (ST-PSCM). The module achieves a 27.2 % average visible light transmittance (AVT), a 2.44 % power conversion efficiency (PCE), and a color rendering index of 82, meeting the functional requirements for building applications. Through a circuit quantification model that incorporates radiative recombination, non-radiative recombination, and resistive losses, the study identifies bulk recombination (65.17 %) and series resistance losses (29.53 %) as the primary mechanisms of efficiency loss. Furthermore, leveraging the Solar Design optoelectronic coupling simulation platform, the temperature and light intensity response characteristics of the ST-PSCM were systematically analyzed. Through a layer-by-layer optimization of thicknesses of each functional layer, the module achieved a PCE of 2.80 % at 38.3 % AVT. This study provides a scalable manufacturing approach for the large-scale application of semi-transparent perovskite photovoltaic windows, offering significant practical value for advancing the development of near-zero energy building technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信