一种具有隐藏吸引子的超混沌多稳定异构神经网络及其在图像加密中的应用

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Zhi Huang , Zhen Li , Qiao Wang , Weijie Tan , Xianming Wu
{"title":"一种具有隐藏吸引子的超混沌多稳定异构神经网络及其在图像加密中的应用","authors":"Zhi Huang ,&nbsp;Zhen Li ,&nbsp;Qiao Wang ,&nbsp;Weijie Tan ,&nbsp;Xianming Wu","doi":"10.1016/j.cjph.2025.05.037","DOIUrl":null,"url":null,"abstract":"<div><div>By simulating the unique properties of different types of neurons and their interconnecting patterns, heterogeneous neural networks can more accurately reflect the structural and functional characteristics of biological neural systems. Therefore, a novel hyperbolic non-volatile locally active memristor is proposed, enabling the construction of a heterogeneous Hindmarsh–Rose neuron memristive synapse-coupled Hopfield neural network (HR-M-HNN) via synaptic characteristic emulation. Dynamic analysis reveals that the HR-M-HNN exhibits hidden attractor characteristics due to the absence of equilibrium points and can generate complex dynamics behaviors, including hyperchaos, chaos, periodic and quasi-periodic, and multistability. Further research reveals a strong correlation between the chaotic state of HR-M-HNN and the locally active control parameter of the memristor. To verify the accuracy of the dynamic analysis, the corresponding analog circuit is designed. Furthermore, based on the HR-M-HNN hyperchaotic system, a novel image encryption scheme is proposed, which utilizes the position index of the Latin square to perform synchronous permutation and diffusion on the plain image, reducing redundant operations and effectively enhancing the encryption speed. Security analyses demonstrate that the proposed image encryption scheme offers excellent performance and robustness.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"96 ","pages":"Pages 851-874"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel hyperchaotic multistable heterogeneous neural network with hidden attractors and its application in image encryption\",\"authors\":\"Zhi Huang ,&nbsp;Zhen Li ,&nbsp;Qiao Wang ,&nbsp;Weijie Tan ,&nbsp;Xianming Wu\",\"doi\":\"10.1016/j.cjph.2025.05.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By simulating the unique properties of different types of neurons and their interconnecting patterns, heterogeneous neural networks can more accurately reflect the structural and functional characteristics of biological neural systems. Therefore, a novel hyperbolic non-volatile locally active memristor is proposed, enabling the construction of a heterogeneous Hindmarsh–Rose neuron memristive synapse-coupled Hopfield neural network (HR-M-HNN) via synaptic characteristic emulation. Dynamic analysis reveals that the HR-M-HNN exhibits hidden attractor characteristics due to the absence of equilibrium points and can generate complex dynamics behaviors, including hyperchaos, chaos, periodic and quasi-periodic, and multistability. Further research reveals a strong correlation between the chaotic state of HR-M-HNN and the locally active control parameter of the memristor. To verify the accuracy of the dynamic analysis, the corresponding analog circuit is designed. Furthermore, based on the HR-M-HNN hyperchaotic system, a novel image encryption scheme is proposed, which utilizes the position index of the Latin square to perform synchronous permutation and diffusion on the plain image, reducing redundant operations and effectively enhancing the encryption speed. Security analyses demonstrate that the proposed image encryption scheme offers excellent performance and robustness.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"96 \",\"pages\":\"Pages 851-874\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907325002151\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325002151","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

异质神经网络通过模拟不同类型神经元的独特性质及其相互连接模式,可以更准确地反映生物神经系统的结构和功能特征。为此,提出了一种新型的双曲型非易失性局部有源忆阻器,通过突触特性仿真构建异质Hindmarsh-Rose神经元忆阻突触耦合Hopfield神经网络(hrm - hnn)。动力学分析表明,由于没有平衡点,HR-M-HNN具有隐藏吸引子特性,可以产生复杂的动力学行为,包括超混沌、混沌、周期和准周期以及多稳定性。进一步的研究表明,HR-M-HNN的混沌状态与忆阻器的局部主动控制参数之间存在很强的相关性。为了验证动态分析的准确性,设计了相应的模拟电路。在HR-M-HNN超混沌系统的基础上,提出了一种新的图像加密方案,利用拉丁方的位置索引对平面图像进行同步排列和扩散,减少了冗余操作,有效提高了加密速度。安全性分析表明,所提出的图像加密方案具有良好的性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel hyperchaotic multistable heterogeneous neural network with hidden attractors and its application in image encryption

A novel hyperchaotic multistable heterogeneous neural network with hidden attractors and its application in image encryption
By simulating the unique properties of different types of neurons and their interconnecting patterns, heterogeneous neural networks can more accurately reflect the structural and functional characteristics of biological neural systems. Therefore, a novel hyperbolic non-volatile locally active memristor is proposed, enabling the construction of a heterogeneous Hindmarsh–Rose neuron memristive synapse-coupled Hopfield neural network (HR-M-HNN) via synaptic characteristic emulation. Dynamic analysis reveals that the HR-M-HNN exhibits hidden attractor characteristics due to the absence of equilibrium points and can generate complex dynamics behaviors, including hyperchaos, chaos, periodic and quasi-periodic, and multistability. Further research reveals a strong correlation between the chaotic state of HR-M-HNN and the locally active control parameter of the memristor. To verify the accuracy of the dynamic analysis, the corresponding analog circuit is designed. Furthermore, based on the HR-M-HNN hyperchaotic system, a novel image encryption scheme is proposed, which utilizes the position index of the Latin square to perform synchronous permutation and diffusion on the plain image, reducing redundant operations and effectively enhancing the encryption speed. Security analyses demonstrate that the proposed image encryption scheme offers excellent performance and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信