Lucien Fitzpatrick , Bailey A. Murphy , Meghan G. Midgley , Ankur R. Desai , Michael C. Dietze , Kurt Dreisilker , Christine R. Rollinson
{"title":"随着时间的推移,收获遗产和气候变化相互作用塑造了森林结构和生物量","authors":"Lucien Fitzpatrick , Bailey A. Murphy , Meghan G. Midgley , Ankur R. Desai , Michael C. Dietze , Kurt Dreisilker , Christine R. Rollinson","doi":"10.1016/j.jenvman.2025.126272","DOIUrl":null,"url":null,"abstract":"<div><div>Forest structural change driven by climate trends has been observed worldwide and is expected to increase in the future. Management of forest structure has been an important tool for mitigating the impacts of climate change but forest structure may shift independently of management goals as it interacts with climate change. Here, we investigated the long-term impacts of harvest-based management strategies on structure and resistance to climate-induced biomass loss using a process-based ecosystem model for a midwestern USA hardwood forest. We identified aboveground biomass loss events and compared the cumulative number of these events following a five-year period of active management under four management strategies and two climate change scenarios. Management legacy had the clearest impact on climate-driven biomass loss over the mid-term (∼25 years) with the shelterwood scenario experiencing no loss events during this period. However, by the end of the century legacy effects faded and climate change severity became the driver of differences as greater warming scenarios experienced twice the loss events, and end-of-century loss events were 3–10 times more frequent than mid-century events. We found that while structure was distinct among harvest scenarios through the mid-century, differences were negligible by the end-of-century; identical to when management correlated with loss event frequency. We found that loss events were preceded by a drop in precipitation two years prior, while no specific forest structure preceded a loss event. However, the structures preceding a biomass loss event were distinct across different legacies, implying additional influences of past management.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"390 ","pages":"Article 126272"},"PeriodicalIF":8.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harvest legacies and climate change interact to shape forest structure and biomass through time\",\"authors\":\"Lucien Fitzpatrick , Bailey A. Murphy , Meghan G. Midgley , Ankur R. Desai , Michael C. Dietze , Kurt Dreisilker , Christine R. Rollinson\",\"doi\":\"10.1016/j.jenvman.2025.126272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Forest structural change driven by climate trends has been observed worldwide and is expected to increase in the future. Management of forest structure has been an important tool for mitigating the impacts of climate change but forest structure may shift independently of management goals as it interacts with climate change. Here, we investigated the long-term impacts of harvest-based management strategies on structure and resistance to climate-induced biomass loss using a process-based ecosystem model for a midwestern USA hardwood forest. We identified aboveground biomass loss events and compared the cumulative number of these events following a five-year period of active management under four management strategies and two climate change scenarios. Management legacy had the clearest impact on climate-driven biomass loss over the mid-term (∼25 years) with the shelterwood scenario experiencing no loss events during this period. However, by the end of the century legacy effects faded and climate change severity became the driver of differences as greater warming scenarios experienced twice the loss events, and end-of-century loss events were 3–10 times more frequent than mid-century events. We found that while structure was distinct among harvest scenarios through the mid-century, differences were negligible by the end-of-century; identical to when management correlated with loss event frequency. We found that loss events were preceded by a drop in precipitation two years prior, while no specific forest structure preceded a loss event. However, the structures preceding a biomass loss event were distinct across different legacies, implying additional influences of past management.</div></div>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"390 \",\"pages\":\"Article 126272\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301479725022480\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725022480","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Harvest legacies and climate change interact to shape forest structure and biomass through time
Forest structural change driven by climate trends has been observed worldwide and is expected to increase in the future. Management of forest structure has been an important tool for mitigating the impacts of climate change but forest structure may shift independently of management goals as it interacts with climate change. Here, we investigated the long-term impacts of harvest-based management strategies on structure and resistance to climate-induced biomass loss using a process-based ecosystem model for a midwestern USA hardwood forest. We identified aboveground biomass loss events and compared the cumulative number of these events following a five-year period of active management under four management strategies and two climate change scenarios. Management legacy had the clearest impact on climate-driven biomass loss over the mid-term (∼25 years) with the shelterwood scenario experiencing no loss events during this period. However, by the end of the century legacy effects faded and climate change severity became the driver of differences as greater warming scenarios experienced twice the loss events, and end-of-century loss events were 3–10 times more frequent than mid-century events. We found that while structure was distinct among harvest scenarios through the mid-century, differences were negligible by the end-of-century; identical to when management correlated with loss event frequency. We found that loss events were preceded by a drop in precipitation two years prior, while no specific forest structure preceded a loss event. However, the structures preceding a biomass loss event were distinct across different legacies, implying additional influences of past management.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.