{"title":"具有密度相关运动的空间Solow-Swan模型全局有界解的存在性","authors":"Yingying Li, Kaiqiang Li, Liqiong Pu, Jiashan Zheng","doi":"10.1016/j.nonrwa.2025.104453","DOIUrl":null,"url":null,"abstract":"<div><div>This research examines a spatial Solow-Swan model characterized by density-dependent motion, as illustrated by the following system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>γ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>−</mo><mi>u</mi><mi>ϕ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>u</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>σ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> are positive constants, <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mrow><mo>(</mo><mi>N</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> denotes a bounded domain with a smooth boundary, and the functions <span><math><mi>ϕ</mi></math></span> and <span><math><mi>γ</mi></math></span> belong to <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>,</mo><mi>γ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> for all <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. The conditions for the parameters are specified as follows: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><mi>σ</mi><mo>+</mo><mi>α</mi><mo>></mo><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mtext>for</mtext><mi>μ</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>1</mn><mo>−</mo><mi>α</mi><mo><</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo></mtd><mtd></mtd><mtd><mtext>for</mtext><mi>μ</mi><mo>=</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Under Neumann boundary conditions, a unique globally bounded classical solution is established. Additionally, we illustrate that the solution to the aforementioned system converges exponentially to the steady state <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104453"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence of globally bounded solutions for a spatial Solow-Swan model with density-dependent motion\",\"authors\":\"Yingying Li, Kaiqiang Li, Liqiong Pu, Jiashan Zheng\",\"doi\":\"10.1016/j.nonrwa.2025.104453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research examines a spatial Solow-Swan model characterized by density-dependent motion, as illustrated by the following system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>γ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>−</mo><mi>u</mi><mi>ϕ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>u</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>σ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> are positive constants, <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mrow><mo>(</mo><mi>N</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> denotes a bounded domain with a smooth boundary, and the functions <span><math><mi>ϕ</mi></math></span> and <span><math><mi>γ</mi></math></span> belong to <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>,</mo><mi>γ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> for all <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. The conditions for the parameters are specified as follows: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><mi>σ</mi><mo>+</mo><mi>α</mi><mo>></mo><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mtext>for</mtext><mi>μ</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>1</mn><mo>−</mo><mi>α</mi><mo><</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo></mtd><mtd></mtd><mtd><mtext>for</mtext><mi>μ</mi><mo>=</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Under Neumann boundary conditions, a unique globally bounded classical solution is established. Additionally, we illustrate that the solution to the aforementioned system converges exponentially to the steady state <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"87 \",\"pages\":\"Article 104453\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001397\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001397","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the existence of globally bounded solutions for a spatial Solow-Swan model with density-dependent motion
This research examines a spatial Solow-Swan model characterized by density-dependent motion, as illustrated by the following system where are positive constants, denotes a bounded domain with a smooth boundary, and the functions and belong to with for all . The conditions for the parameters are specified as follows: Under Neumann boundary conditions, a unique globally bounded classical solution is established. Additionally, we illustrate that the solution to the aforementioned system converges exponentially to the steady state in as .
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.