{"title":"图的公共匹配数","authors":"Magda Dettlaff , Magdalena Lemańska , Jerzy Topp","doi":"10.1016/j.dam.2025.06.014","DOIUrl":null,"url":null,"abstract":"<div><div>The cardinality of the largest matching in a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is referred to as the upper matching number of <span><math><mi>G</mi></math></span>. The lower matching number <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is defined as the cardinality of the smallest maximal matching in <span><math><mi>G</mi></math></span>. We introduce the concept of the common matching number of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which is the largest integer <span><math><mi>k</mi></math></span> such that every edge in <span><math><mi>G</mi></math></span> belongs to a matching that contains at least <span><math><mi>k</mi></math></span> edges. In this paper, we explore the relationships between the parameters <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In particular, we demonstrate that the difference between <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can be arbitrarily large, while the difference between <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can at most be one. Additionally, we characterize the trees <span><math><mi>T</mi></math></span> for which <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, as well as the trees <span><math><mi>T</mi></math></span> for which <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 50-61"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common matching number of a graph\",\"authors\":\"Magda Dettlaff , Magdalena Lemańska , Jerzy Topp\",\"doi\":\"10.1016/j.dam.2025.06.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cardinality of the largest matching in a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is referred to as the upper matching number of <span><math><mi>G</mi></math></span>. The lower matching number <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is defined as the cardinality of the smallest maximal matching in <span><math><mi>G</mi></math></span>. We introduce the concept of the common matching number of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which is the largest integer <span><math><mi>k</mi></math></span> such that every edge in <span><math><mi>G</mi></math></span> belongs to a matching that contains at least <span><math><mi>k</mi></math></span> edges. In this paper, we explore the relationships between the parameters <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In particular, we demonstrate that the difference between <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can be arbitrarily large, while the difference between <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can at most be one. Additionally, we characterize the trees <span><math><mi>T</mi></math></span> for which <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, as well as the trees <span><math><mi>T</mi></math></span> for which <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"376 \",\"pages\":\"Pages 50-61\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25003300\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003300","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The cardinality of the largest matching in a graph , denoted by , is referred to as the upper matching number of . The lower matching number is defined as the cardinality of the smallest maximal matching in . We introduce the concept of the common matching number of a graph , denoted by , which is the largest integer such that every edge in belongs to a matching that contains at least edges. In this paper, we explore the relationships between the parameters , , and . In particular, we demonstrate that the difference between and can be arbitrarily large, while the difference between and can at most be one. Additionally, we characterize the trees for which , as well as the trees for which .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.