图的公共匹配数

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Magda Dettlaff , Magdalena Lemańska , Jerzy Topp
{"title":"图的公共匹配数","authors":"Magda Dettlaff ,&nbsp;Magdalena Lemańska ,&nbsp;Jerzy Topp","doi":"10.1016/j.dam.2025.06.014","DOIUrl":null,"url":null,"abstract":"<div><div>The cardinality of the largest matching in a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is referred to as the upper matching number of <span><math><mi>G</mi></math></span>. The lower matching number <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is defined as the cardinality of the smallest maximal matching in <span><math><mi>G</mi></math></span>. We introduce the concept of the common matching number of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which is the largest integer <span><math><mi>k</mi></math></span> such that every edge in <span><math><mi>G</mi></math></span> belongs to a matching that contains at least <span><math><mi>k</mi></math></span> edges. In this paper, we explore the relationships between the parameters <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In particular, we demonstrate that the difference between <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can be arbitrarily large, while the difference between <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can at most be one. Additionally, we characterize the trees <span><math><mi>T</mi></math></span> for which <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, as well as the trees <span><math><mi>T</mi></math></span> for which <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 50-61"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common matching number of a graph\",\"authors\":\"Magda Dettlaff ,&nbsp;Magdalena Lemańska ,&nbsp;Jerzy Topp\",\"doi\":\"10.1016/j.dam.2025.06.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cardinality of the largest matching in a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is referred to as the upper matching number of <span><math><mi>G</mi></math></span>. The lower matching number <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is defined as the cardinality of the smallest maximal matching in <span><math><mi>G</mi></math></span>. We introduce the concept of the common matching number of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which is the largest integer <span><math><mi>k</mi></math></span> such that every edge in <span><math><mi>G</mi></math></span> belongs to a matching that contains at least <span><math><mi>k</mi></math></span> edges. In this paper, we explore the relationships between the parameters <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In particular, we demonstrate that the difference between <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can be arbitrarily large, while the difference between <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can at most be one. Additionally, we characterize the trees <span><math><mi>T</mi></math></span> for which <span><math><mrow><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, as well as the trees <span><math><mi>T</mi></math></span> for which <span><math><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"376 \",\"pages\":\"Pages 50-61\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25003300\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003300","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图G中最大匹配的基数,记作α′(G),称为G的上匹配数;图G中的下匹配数i′(G),定义为图G中最小最大匹配的基数。我们引入图G的公共匹配数的概念,记作αc′(G),它是使图G中的每条边都属于至少包含k条边的匹配的最大整数k。本文探讨了参数i ' (G)、αc ' (G)和α ' (G)之间的关系。特别地,我们证明了αc ' (G)与i ' (G)之间的差值可以任意大,而α ' (G)与αc ' (G)之间的差值最多为1。此外,我们描述了i ' (T)=αc ' (T)的树T,以及αc ' (T)=α ' (T)的树T。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common matching number of a graph
The cardinality of the largest matching in a graph G, denoted by α(G), is referred to as the upper matching number of G. The lower matching number i(G) is defined as the cardinality of the smallest maximal matching in G. We introduce the concept of the common matching number of a graph G, denoted by αc(G), which is the largest integer k such that every edge in G belongs to a matching that contains at least k edges. In this paper, we explore the relationships between the parameters i(G), αc(G), and α(G). In particular, we demonstrate that the difference between αc(G) and i(G) can be arbitrarily large, while the difference between α(G) and αc(G) can at most be one. Additionally, we characterize the trees T for which i(T)=αc(T), as well as the trees T for which αc(T)=α(T).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信