SciBlend:高级数据可视化工作流程在搅拌机

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
José Marín , Tiffany M.G. Baptiste , Cristobal Rodero , Steven E. Williams , Steven A. Niederer , Ignacio García-Fernández
{"title":"SciBlend:高级数据可视化工作流程在搅拌机","authors":"José Marín ,&nbsp;Tiffany M.G. Baptiste ,&nbsp;Cristobal Rodero ,&nbsp;Steven E. Williams ,&nbsp;Steven A. Niederer ,&nbsp;Ignacio García-Fernández","doi":"10.1016/j.cag.2025.104264","DOIUrl":null,"url":null,"abstract":"<div><div>Scientific data visualization is essential for analysis, communication, and storytelling in research. While Blender offers a powerful rendering engine and a flexible 3D environment, its steep learning curve and general-purpose interface can hinder scientific workflows. To address this gap, we present SciBlend, a Python-based toolkit that extends Blender for data visualization. It provides specialized add-ons for multiple computational data files import, annotation, shading, and scene composition, enabling both photorealistic (Cycles) and real-time (EEVEE) rendering of large-scale and time-varying data. By combining a streamlined workflow with physically based rendering, SciBlend supports advanced visualization tasks while preserving essential scientific attributes. Comparative evaluations across multiple case studies show improvements in rendering performance, clarity, and reproducibility relative to traditional tools. This modular and user-oriented design offers a robust solution for creating publication-ready visuals of complex computational data.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"130 ","pages":"Article 104264"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SciBlend: Advanced data visualization workflows within Blender\",\"authors\":\"José Marín ,&nbsp;Tiffany M.G. Baptiste ,&nbsp;Cristobal Rodero ,&nbsp;Steven E. Williams ,&nbsp;Steven A. Niederer ,&nbsp;Ignacio García-Fernández\",\"doi\":\"10.1016/j.cag.2025.104264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Scientific data visualization is essential for analysis, communication, and storytelling in research. While Blender offers a powerful rendering engine and a flexible 3D environment, its steep learning curve and general-purpose interface can hinder scientific workflows. To address this gap, we present SciBlend, a Python-based toolkit that extends Blender for data visualization. It provides specialized add-ons for multiple computational data files import, annotation, shading, and scene composition, enabling both photorealistic (Cycles) and real-time (EEVEE) rendering of large-scale and time-varying data. By combining a streamlined workflow with physically based rendering, SciBlend supports advanced visualization tasks while preserving essential scientific attributes. Comparative evaluations across multiple case studies show improvements in rendering performance, clarity, and reproducibility relative to traditional tools. This modular and user-oriented design offers a robust solution for creating publication-ready visuals of complex computational data.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"130 \",\"pages\":\"Article 104264\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849325001050\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325001050","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

科学数据可视化对于研究中的分析、交流和讲故事是必不可少的。虽然Blender提供了强大的渲染引擎和灵活的3D环境,但其陡峭的学习曲线和通用界面可能会阻碍科学工作流程。为了解决这个问题,我们提出了SciBlend,这是一个基于python的工具包,它扩展了Blender的数据可视化功能。它为多个计算数据文件的导入、注释、着色和场景合成提供了专门的附加组件,实现了大规模和时变数据的逼真(Cycles)和实时(EEVEE)渲染。通过将简化的工作流程与基于物理的渲染相结合,SciBlend支持高级可视化任务,同时保留基本的科学属性。跨多个案例研究的比较评估显示,与传统工具相比,在渲染性能、清晰度和再现性方面有所改进。这种模块化和面向用户的设计为创建可发布的复杂计算数据可视化提供了强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SciBlend: Advanced data visualization workflows within Blender

SciBlend: Advanced data visualization workflows within Blender
Scientific data visualization is essential for analysis, communication, and storytelling in research. While Blender offers a powerful rendering engine and a flexible 3D environment, its steep learning curve and general-purpose interface can hinder scientific workflows. To address this gap, we present SciBlend, a Python-based toolkit that extends Blender for data visualization. It provides specialized add-ons for multiple computational data files import, annotation, shading, and scene composition, enabling both photorealistic (Cycles) and real-time (EEVEE) rendering of large-scale and time-varying data. By combining a streamlined workflow with physically based rendering, SciBlend supports advanced visualization tasks while preserving essential scientific attributes. Comparative evaluations across multiple case studies show improvements in rendering performance, clarity, and reproducibility relative to traditional tools. This modular and user-oriented design offers a robust solution for creating publication-ready visuals of complex computational data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信