Johan Friemann , Lars P. Mikkelsen , Carolyn Oddy , Martin Fagerström
{"title":"基于机器学习的x射线CT图像分割的合成、自动标记训练数据:应用于3d纺织碳纤维增强复合材料","authors":"Johan Friemann , Lars P. Mikkelsen , Carolyn Oddy , Martin Fagerström","doi":"10.1016/j.compositesb.2025.112656","DOIUrl":null,"url":null,"abstract":"<div><div>Composite parts with 3D-textile reinforcement show promise in high-performance applications. For widespread use, accurate material characterisations are required. Characterisation of the textile architecture in the as-manufactured state may be performed with X-ray CT. Due to the similarity between the chemical composition of carbon fibres and epoxy based matrices, the contrast of X-ray CT scans is poor. Therefore, segmentation with classical methods is difficult or even impossible. Alternatively, machine learning based segmentation approaches may be used. One drawback of machine learning-based algorithms is the need for large datasets whose ground truth labellings require extensive manual labour. This can be circumvented by utilising automatically labelled synthetic X-ray CT data. In this work, a novel pipeline that generates synthetic CT image datasets, with automatically labelled ground truths, is developed. The pipeline is entirely based on free and/or open source software. It is demonstrated that segmentation model, trained on only such data, is able to accurately segment a real X-ray CT scan of a 3D-reinforced carbon fibre composite sample. A pixel-wise agreement of 88% is reached when compared to a manual segmentation. This implies potentially large time savings in segmentation tasks, which could accelerate characterisation of textile composites in their as-manufactured state.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"305 ","pages":"Article 112656"},"PeriodicalIF":14.2000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic, automatically labelled training data for machine learning based X-ray CT image segmentation: Application to 3D-textile carbon fibre reinforced composites\",\"authors\":\"Johan Friemann , Lars P. Mikkelsen , Carolyn Oddy , Martin Fagerström\",\"doi\":\"10.1016/j.compositesb.2025.112656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Composite parts with 3D-textile reinforcement show promise in high-performance applications. For widespread use, accurate material characterisations are required. Characterisation of the textile architecture in the as-manufactured state may be performed with X-ray CT. Due to the similarity between the chemical composition of carbon fibres and epoxy based matrices, the contrast of X-ray CT scans is poor. Therefore, segmentation with classical methods is difficult or even impossible. Alternatively, machine learning based segmentation approaches may be used. One drawback of machine learning-based algorithms is the need for large datasets whose ground truth labellings require extensive manual labour. This can be circumvented by utilising automatically labelled synthetic X-ray CT data. In this work, a novel pipeline that generates synthetic CT image datasets, with automatically labelled ground truths, is developed. The pipeline is entirely based on free and/or open source software. It is demonstrated that segmentation model, trained on only such data, is able to accurately segment a real X-ray CT scan of a 3D-reinforced carbon fibre composite sample. A pixel-wise agreement of 88% is reached when compared to a manual segmentation. This implies potentially large time savings in segmentation tasks, which could accelerate characterisation of textile composites in their as-manufactured state.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"305 \",\"pages\":\"Article 112656\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825005578\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825005578","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthetic, automatically labelled training data for machine learning based X-ray CT image segmentation: Application to 3D-textile carbon fibre reinforced composites
Composite parts with 3D-textile reinforcement show promise in high-performance applications. For widespread use, accurate material characterisations are required. Characterisation of the textile architecture in the as-manufactured state may be performed with X-ray CT. Due to the similarity between the chemical composition of carbon fibres and epoxy based matrices, the contrast of X-ray CT scans is poor. Therefore, segmentation with classical methods is difficult or even impossible. Alternatively, machine learning based segmentation approaches may be used. One drawback of machine learning-based algorithms is the need for large datasets whose ground truth labellings require extensive manual labour. This can be circumvented by utilising automatically labelled synthetic X-ray CT data. In this work, a novel pipeline that generates synthetic CT image datasets, with automatically labelled ground truths, is developed. The pipeline is entirely based on free and/or open source software. It is demonstrated that segmentation model, trained on only such data, is able to accurately segment a real X-ray CT scan of a 3D-reinforced carbon fibre composite sample. A pixel-wise agreement of 88% is reached when compared to a manual segmentation. This implies potentially large time savings in segmentation tasks, which could accelerate characterisation of textile composites in their as-manufactured state.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.