{"title":"水道护岸预应力混凝土墙桩力学特性模型试验研究","authors":"Yuedong Wu , Yichen Que , Jian Liu , Shixu Liu","doi":"10.1016/j.cscm.2025.e04965","DOIUrl":null,"url":null,"abstract":"<div><div>Bank protection engineering in inland waterways is crucial for maintaining channel stability and reducing sediment deposition. Precast bank protection piles have rapidly developed due to their structural advantages and economic construction. This study proposes a novel prestressed concrete wall pile (PC wall pile) characterized by high strength, excellent water resistance, and convenient installation. The mechanical properties were investigated through laboratory model tests replicating actual engineering conditions, analyzing pile deformation, horizontal load resistance, and pile-soil interaction characteristics. The results indicate that during load-bearing under dredging embankment conditions, the PC wall pile system rotates forward around the toe with localized deflection. The front soil pressure demonstrates essentially linear distribution, while the rear soil pressure exhibits significant nonlinear characteristics attributed to pile-soil interactions, soil arching effects, and soil unloading phenomena. Prestressing application reduces the maximum bending moment at ultimate state by 18 %-25 %. When pile length increases by 14 %, the ultimate load-bearing capacity improves by 36 %-47 %. These findings provide valuable insights for optimizing prestress levels and pile length ratios in practical PC wall pile designs.</div></div>","PeriodicalId":9641,"journal":{"name":"Case Studies in Construction Materials","volume":"23 ","pages":"Article e04965"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model experimental study on mechanical characteristics of prestressed concrete (PC) wall piles for waterway revetment\",\"authors\":\"Yuedong Wu , Yichen Que , Jian Liu , Shixu Liu\",\"doi\":\"10.1016/j.cscm.2025.e04965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bank protection engineering in inland waterways is crucial for maintaining channel stability and reducing sediment deposition. Precast bank protection piles have rapidly developed due to their structural advantages and economic construction. This study proposes a novel prestressed concrete wall pile (PC wall pile) characterized by high strength, excellent water resistance, and convenient installation. The mechanical properties were investigated through laboratory model tests replicating actual engineering conditions, analyzing pile deformation, horizontal load resistance, and pile-soil interaction characteristics. The results indicate that during load-bearing under dredging embankment conditions, the PC wall pile system rotates forward around the toe with localized deflection. The front soil pressure demonstrates essentially linear distribution, while the rear soil pressure exhibits significant nonlinear characteristics attributed to pile-soil interactions, soil arching effects, and soil unloading phenomena. Prestressing application reduces the maximum bending moment at ultimate state by 18 %-25 %. When pile length increases by 14 %, the ultimate load-bearing capacity improves by 36 %-47 %. These findings provide valuable insights for optimizing prestress levels and pile length ratios in practical PC wall pile designs.</div></div>\",\"PeriodicalId\":9641,\"journal\":{\"name\":\"Case Studies in Construction Materials\",\"volume\":\"23 \",\"pages\":\"Article e04965\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Construction Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214509525007636\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Construction Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214509525007636","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Model experimental study on mechanical characteristics of prestressed concrete (PC) wall piles for waterway revetment
Bank protection engineering in inland waterways is crucial for maintaining channel stability and reducing sediment deposition. Precast bank protection piles have rapidly developed due to their structural advantages and economic construction. This study proposes a novel prestressed concrete wall pile (PC wall pile) characterized by high strength, excellent water resistance, and convenient installation. The mechanical properties were investigated through laboratory model tests replicating actual engineering conditions, analyzing pile deformation, horizontal load resistance, and pile-soil interaction characteristics. The results indicate that during load-bearing under dredging embankment conditions, the PC wall pile system rotates forward around the toe with localized deflection. The front soil pressure demonstrates essentially linear distribution, while the rear soil pressure exhibits significant nonlinear characteristics attributed to pile-soil interactions, soil arching effects, and soil unloading phenomena. Prestressing application reduces the maximum bending moment at ultimate state by 18 %-25 %. When pile length increases by 14 %, the ultimate load-bearing capacity improves by 36 %-47 %. These findings provide valuable insights for optimizing prestress levels and pile length ratios in practical PC wall pile designs.
期刊介绍:
Case Studies in Construction Materials provides a forum for the rapid publication of short, structured Case Studies on construction materials. In addition, the journal also publishes related Short Communications, Full length research article and Comprehensive review papers (by invitation).
The journal will provide an essential compendium of case studies for practicing engineers, designers, researchers and other practitioners who are interested in all aspects construction materials. The journal will publish new and novel case studies, but will also provide a forum for the publication of high quality descriptions of classic construction material problems and solutions.