超声和磁增强血脑屏障运输用于自我增强压电芬顿胶质母细胞瘤治疗

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Meng Yuan, Wanting Zhang, Yuchu He, Xuwu Zhang, Xiyun Yan, Jinhui Zhang, Hengrui Liu, Liang Dai, Wenkang Tu, Weili Xue, Dawei Gao
{"title":"超声和磁增强血脑屏障运输用于自我增强压电芬顿胶质母细胞瘤治疗","authors":"Meng Yuan, Wanting Zhang, Yuchu He, Xuwu Zhang, Xiyun Yan, Jinhui Zhang, Hengrui Liu, Liang Dai, Wenkang Tu, Weili Xue, Dawei Gao","doi":"10.1002/adfm.202506400","DOIUrl":null,"url":null,"abstract":"Glioblastoma (GBM) remains the most aggressive primary brain tumor, with therapeutic efficacy constrained by the blood-brain barrier (BBB) that restricts targeted drug delivery. Although certain therapeutics successfully traverse the BBB, elevated interstitial pressure within tumors continues to compromise intratumoral penetration. To enhance intratumoral delivery of GBM, a dual-responsive nanodrug is constructed by incorporating piezoelectric BaTiO<sub>3</sub> (BTO) nanoparticles with magnetic Fe<sub>3</sub>O<sub>4</sub>. Ultrasound induces a temporary opening of the BBB, facilitating subsequent targeted delivery of the nanodrug to the GBM site under magnetic guidance. Under ultrasound stimulation, the nanoparticles then conduct a piezocatalytic water splitting within tumor interstitium, reducing fluid pressure and enabling drug penetration into the tumor core region. After deeply penetrating into the tumor, the nanodrugs generate electrons through piezocatalysis and then reduce Fe<sup>3+</sup> to Fe<sup>2+</sup>. The sustainable generated Fe<sup>2+</sup> initiates a piezo-Fenton coupled catalytic system that produces abundant reactive oxygen species (ROS) for oxidative cell stress. This study develops a 3-step strategy for ultrasound-/magnet- GBM navigation and penetration, optimizing drug delivery mode in GBM therapy. Moreover, the on-site piezo-Fenton coupled catalysis achieves continuous ROS regeneration and iron species recycling, thereby effectively eradicating GBM.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"19 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound- and Magnet-Enhanced Blood-Brain Barrier Transport for Self-Augmented Piezo-Fenton Glioblastoma Therapy\",\"authors\":\"Meng Yuan, Wanting Zhang, Yuchu He, Xuwu Zhang, Xiyun Yan, Jinhui Zhang, Hengrui Liu, Liang Dai, Wenkang Tu, Weili Xue, Dawei Gao\",\"doi\":\"10.1002/adfm.202506400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glioblastoma (GBM) remains the most aggressive primary brain tumor, with therapeutic efficacy constrained by the blood-brain barrier (BBB) that restricts targeted drug delivery. Although certain therapeutics successfully traverse the BBB, elevated interstitial pressure within tumors continues to compromise intratumoral penetration. To enhance intratumoral delivery of GBM, a dual-responsive nanodrug is constructed by incorporating piezoelectric BaTiO<sub>3</sub> (BTO) nanoparticles with magnetic Fe<sub>3</sub>O<sub>4</sub>. Ultrasound induces a temporary opening of the BBB, facilitating subsequent targeted delivery of the nanodrug to the GBM site under magnetic guidance. Under ultrasound stimulation, the nanoparticles then conduct a piezocatalytic water splitting within tumor interstitium, reducing fluid pressure and enabling drug penetration into the tumor core region. After deeply penetrating into the tumor, the nanodrugs generate electrons through piezocatalysis and then reduce Fe<sup>3+</sup> to Fe<sup>2+</sup>. The sustainable generated Fe<sup>2+</sup> initiates a piezo-Fenton coupled catalytic system that produces abundant reactive oxygen species (ROS) for oxidative cell stress. This study develops a 3-step strategy for ultrasound-/magnet- GBM navigation and penetration, optimizing drug delivery mode in GBM therapy. Moreover, the on-site piezo-Fenton coupled catalysis achieves continuous ROS regeneration and iron species recycling, thereby effectively eradicating GBM.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202506400\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202506400","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

胶质母细胞瘤(GBM)仍然是最具侵袭性的原发性脑肿瘤,其治疗效果受到血脑屏障(BBB)的限制,这限制了靶向药物的递送。虽然某些治疗方法成功地穿过血脑屏障,但肿瘤内升高的间质压力继续损害肿瘤内的渗透。为了增强GBM的肿瘤内递送,将压电BaTiO3 (BTO)纳米颗粒与磁性Fe3O4结合构建了双响应纳米药物。超声诱导血脑屏障暂时打开,便于随后在磁引导下靶向递送纳米药物到GBM部位。在超声刺激下,纳米颗粒在肿瘤间质内进行压催化水裂解,降低流体压力,使药物能够渗透到肿瘤核心区域。纳米药物深入肿瘤后,通过压电催化产生电子,将Fe3+还原为Fe2+。持续生成的Fe2+启动了一个压电- fenton耦合催化系统,产生丰富的活性氧(ROS),用于氧化细胞应激。本研究提出了超声/磁体- GBM导航穿透三步策略,优化GBM治疗中的药物给药模式。此外,现场压电- fenton耦合催化实现了连续的ROS再生和铁种回收,从而有效地根除GBM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasound- and Magnet-Enhanced Blood-Brain Barrier Transport for Self-Augmented Piezo-Fenton Glioblastoma Therapy
Glioblastoma (GBM) remains the most aggressive primary brain tumor, with therapeutic efficacy constrained by the blood-brain barrier (BBB) that restricts targeted drug delivery. Although certain therapeutics successfully traverse the BBB, elevated interstitial pressure within tumors continues to compromise intratumoral penetration. To enhance intratumoral delivery of GBM, a dual-responsive nanodrug is constructed by incorporating piezoelectric BaTiO3 (BTO) nanoparticles with magnetic Fe3O4. Ultrasound induces a temporary opening of the BBB, facilitating subsequent targeted delivery of the nanodrug to the GBM site under magnetic guidance. Under ultrasound stimulation, the nanoparticles then conduct a piezocatalytic water splitting within tumor interstitium, reducing fluid pressure and enabling drug penetration into the tumor core region. After deeply penetrating into the tumor, the nanodrugs generate electrons through piezocatalysis and then reduce Fe3+ to Fe2+. The sustainable generated Fe2+ initiates a piezo-Fenton coupled catalytic system that produces abundant reactive oxygen species (ROS) for oxidative cell stress. This study develops a 3-step strategy for ultrasound-/magnet- GBM navigation and penetration, optimizing drug delivery mode in GBM therapy. Moreover, the on-site piezo-Fenton coupled catalysis achieves continuous ROS regeneration and iron species recycling, thereby effectively eradicating GBM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信