快速凝固zr基合金玻璃晶相组织演变及其对力学性能的影响

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Gexin Li, Huimin Chen, Jian Chang
{"title":"快速凝固zr基合金玻璃晶相组织演变及其对力学性能的影响","authors":"Gexin Li, Huimin Chen, Jian Chang","doi":"10.1016/j.jallcom.2025.181782","DOIUrl":null,"url":null,"abstract":"The solidified microstructures of Zr<sub>50</sub>Cu<sub>40</sub>Al<sub>10</sub>, Zr<sub>49</sub>Cu<sub>44</sub>Al<sub>7</sub>, and Zr<sub>49</sub>Cu<sub>46</sub>Al<sub>5</sub> alloys were studied by rapid solidified technique, and the phase constitution evolution effect on their mechanical properties were explored. The analysis of solidified microstructures revealed that the Zr<sub>50</sub>Cu<sub>40</sub>Al<sub>10</sub> alloy formed a fully amorphous structure. In contrast, the Zr<sub>49</sub>Cu<sub>44</sub>Al<sub>7</sub> alloy exhibited an amorphous matrix with spherical B2-ZrCu primary phase particles and B19’-ZrCu phase, while the Zr<sub>49</sub>Cu<sub>46</sub>Al<sub>5</sub> alloy consisted of an amorphous matrix, B19’-ZrCu primary phase, and rod-like B19’-ZrCu phase. For the Zr<sub>49</sub>Cu<sub>51-x</sub>Al<sub>x</sub>(x=5,7) alloys, both primary phases were homogeneously dispersed throughout the microstructure. The mechanical properties of the alloys were compared with the Zr<sub>50</sub>Cu<sub>40</sub>Al<sub>10</sub> alloy demonstrating a tensile strength of 410<!-- --> <!-- -->MPa and a compressive strength of 1608<!-- --> <!-- -->MPa, exhibiting the largest tensile-compressive asymmetry. The Zr<sub>49</sub>Cu<sub>44</sub>Al<sub>7</sub> alloy achieved the highest compressive strength at 1865 MPa and the highest yield strength at 1596<!-- --> <!-- -->MPa. Meanwhile, the Zr<sub>49</sub>Cu<sub>46</sub>Al<sub>5</sub> alloy exhibited the highest tensile strength at 1395<!-- --> <!-- -->MPa. Nanoindentation tests indicated that in the Zr<sub>50</sub>Cu<sub>40</sub>Al<sub>10</sub> alloy, the hardness and elastic modulus increased progressively from the edge to the center of the specimen. For the Zr<sub>49</sub>Cu<sub>51-x</sub>Al<sub>x</sub>(x=5,7) alloys, the solidified microstructures composed of an amorphous matrix and endogenous crystalline phases exhibited higher hardness compared to fully amorphous or crystalline phases. The elastic modulus, however, varied depending on the type of primary phase present.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"19 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glass-crystalline Phase Constitution Evolution and the effect on Mechanical Properties of Rapidly Solidified Zr-based Alloy\",\"authors\":\"Gexin Li, Huimin Chen, Jian Chang\",\"doi\":\"10.1016/j.jallcom.2025.181782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solidified microstructures of Zr<sub>50</sub>Cu<sub>40</sub>Al<sub>10</sub>, Zr<sub>49</sub>Cu<sub>44</sub>Al<sub>7</sub>, and Zr<sub>49</sub>Cu<sub>46</sub>Al<sub>5</sub> alloys were studied by rapid solidified technique, and the phase constitution evolution effect on their mechanical properties were explored. The analysis of solidified microstructures revealed that the Zr<sub>50</sub>Cu<sub>40</sub>Al<sub>10</sub> alloy formed a fully amorphous structure. In contrast, the Zr<sub>49</sub>Cu<sub>44</sub>Al<sub>7</sub> alloy exhibited an amorphous matrix with spherical B2-ZrCu primary phase particles and B19’-ZrCu phase, while the Zr<sub>49</sub>Cu<sub>46</sub>Al<sub>5</sub> alloy consisted of an amorphous matrix, B19’-ZrCu primary phase, and rod-like B19’-ZrCu phase. For the Zr<sub>49</sub>Cu<sub>51-x</sub>Al<sub>x</sub>(x=5,7) alloys, both primary phases were homogeneously dispersed throughout the microstructure. The mechanical properties of the alloys were compared with the Zr<sub>50</sub>Cu<sub>40</sub>Al<sub>10</sub> alloy demonstrating a tensile strength of 410<!-- --> <!-- -->MPa and a compressive strength of 1608<!-- --> <!-- -->MPa, exhibiting the largest tensile-compressive asymmetry. The Zr<sub>49</sub>Cu<sub>44</sub>Al<sub>7</sub> alloy achieved the highest compressive strength at 1865 MPa and the highest yield strength at 1596<!-- --> <!-- -->MPa. Meanwhile, the Zr<sub>49</sub>Cu<sub>46</sub>Al<sub>5</sub> alloy exhibited the highest tensile strength at 1395<!-- --> <!-- -->MPa. Nanoindentation tests indicated that in the Zr<sub>50</sub>Cu<sub>40</sub>Al<sub>10</sub> alloy, the hardness and elastic modulus increased progressively from the edge to the center of the specimen. For the Zr<sub>49</sub>Cu<sub>51-x</sub>Al<sub>x</sub>(x=5,7) alloys, the solidified microstructures composed of an amorphous matrix and endogenous crystalline phases exhibited higher hardness compared to fully amorphous or crystalline phases. The elastic modulus, however, varied depending on the type of primary phase present.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.181782\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.181782","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用快速凝固技术研究了Zr50Cu40Al10、Zr49Cu44Al7和Zr49Cu46Al5合金的凝固组织,探讨了相组织演变对其力学性能的影响。凝固组织分析表明,Zr50Cu40Al10合金形成了完全的非晶组织。相比之下,Zr49Cu44Al7合金表现为由球状B2-ZrCu初生相颗粒和B19′-ZrCu相组成的非晶基体,而Zr49Cu46Al5合金则表现为由B19′-ZrCu初生相和棒状B19′-ZrCu相组成的非晶基体。对于Zr49Cu51-xAlx(x=5,7)合金,两种初生相在组织中均匀分布。与Zr50Cu40Al10合金相比,合金的抗拉强度为410 MPa,抗压强度为1608 MPa,表现出最大的拉压不对称性。Zr49Cu44Al7合金抗压强度最高为1865 MPa,屈服强度最高为1596 MPa。Zr49Cu46Al5合金抗拉强度最高,为1395 MPa。纳米压痕试验表明,在Zr50Cu40Al10合金中,硬度和弹性模量由边缘向中心逐渐增大。对于Zr49Cu51-xAlx(x=5,7)合金,由非晶态基体和内生晶相组成的凝固组织比完全非晶态或晶相具有更高的硬度。然而,弹性模量会根据初生相的类型而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glass-crystalline Phase Constitution Evolution and the effect on Mechanical Properties of Rapidly Solidified Zr-based Alloy
The solidified microstructures of Zr50Cu40Al10, Zr49Cu44Al7, and Zr49Cu46Al5 alloys were studied by rapid solidified technique, and the phase constitution evolution effect on their mechanical properties were explored. The analysis of solidified microstructures revealed that the Zr50Cu40Al10 alloy formed a fully amorphous structure. In contrast, the Zr49Cu44Al7 alloy exhibited an amorphous matrix with spherical B2-ZrCu primary phase particles and B19’-ZrCu phase, while the Zr49Cu46Al5 alloy consisted of an amorphous matrix, B19’-ZrCu primary phase, and rod-like B19’-ZrCu phase. For the Zr49Cu51-xAlx(x=5,7) alloys, both primary phases were homogeneously dispersed throughout the microstructure. The mechanical properties of the alloys were compared with the Zr50Cu40Al10 alloy demonstrating a tensile strength of 410 MPa and a compressive strength of 1608 MPa, exhibiting the largest tensile-compressive asymmetry. The Zr49Cu44Al7 alloy achieved the highest compressive strength at 1865 MPa and the highest yield strength at 1596 MPa. Meanwhile, the Zr49Cu46Al5 alloy exhibited the highest tensile strength at 1395 MPa. Nanoindentation tests indicated that in the Zr50Cu40Al10 alloy, the hardness and elastic modulus increased progressively from the edge to the center of the specimen. For the Zr49Cu51-xAlx(x=5,7) alloys, the solidified microstructures composed of an amorphous matrix and endogenous crystalline phases exhibited higher hardness compared to fully amorphous or crystalline phases. The elastic modulus, however, varied depending on the type of primary phase present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信