弱静电网络结构提高PbS量子点油墨稳定性

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jing Li, Wei Dong, Zhijian Li, Mingxu Zhang, Jianxun Wang, Wenxu Yin*, Xiaoliang Zhang, Zeke Liu, William W. Yu, Xiaoyu Zhang* and Weitao Zheng, 
{"title":"弱静电网络结构提高PbS量子点油墨稳定性","authors":"Jing Li,&nbsp;Wei Dong,&nbsp;Zhijian Li,&nbsp;Mingxu Zhang,&nbsp;Jianxun Wang,&nbsp;Wenxu Yin*,&nbsp;Xiaoliang Zhang,&nbsp;Zeke Liu,&nbsp;William W. Yu,&nbsp;Xiaoyu Zhang* and Weitao Zheng,&nbsp;","doi":"10.1021/acsami.5c09493","DOIUrl":null,"url":null,"abstract":"<p >PbS quantum dot (QD) ink stability in polar solvents is critical for high-performance solar cell fabrication. However, QD aggregation in such solvents often leads to epitaxial fusion, resulting in trap states that degrade the device performance. Here, we demonstrate a novel strategy for enhancing ink stability by constructing a weak electrostatic network structure on the QD surface, which is cobuilt by hydrogen bonds and π interactions, providing a stable environment that prevents QD aggregation and epitaxial fusion. The optimized surface structure confers an ink film, with a 13% reduction in Urbach energy, a 50% decrease in trap state density, and a 107% prolongation of carrier lifetime, suggesting significantly enhanced carrier transport and extraction capabilities. With this approach, PbS QD solar cells can achieve a power conversion efficiency of 13% and remain stable for over 1000 h without encapsulation when stored in air.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 26","pages":"38288–38296"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Electrostatic Network Structure Improves PbS Quantum Dot Ink Stability\",\"authors\":\"Jing Li,&nbsp;Wei Dong,&nbsp;Zhijian Li,&nbsp;Mingxu Zhang,&nbsp;Jianxun Wang,&nbsp;Wenxu Yin*,&nbsp;Xiaoliang Zhang,&nbsp;Zeke Liu,&nbsp;William W. Yu,&nbsp;Xiaoyu Zhang* and Weitao Zheng,&nbsp;\",\"doi\":\"10.1021/acsami.5c09493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >PbS quantum dot (QD) ink stability in polar solvents is critical for high-performance solar cell fabrication. However, QD aggregation in such solvents often leads to epitaxial fusion, resulting in trap states that degrade the device performance. Here, we demonstrate a novel strategy for enhancing ink stability by constructing a weak electrostatic network structure on the QD surface, which is cobuilt by hydrogen bonds and π interactions, providing a stable environment that prevents QD aggregation and epitaxial fusion. The optimized surface structure confers an ink film, with a 13% reduction in Urbach energy, a 50% decrease in trap state density, and a 107% prolongation of carrier lifetime, suggesting significantly enhanced carrier transport and extraction capabilities. With this approach, PbS QD solar cells can achieve a power conversion efficiency of 13% and remain stable for over 1000 h without encapsulation when stored in air.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 26\",\"pages\":\"38288–38296\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c09493\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c09493","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

PbS量子点(QD)油墨在极性溶剂中的稳定性对高性能太阳能电池的制造至关重要。然而,在这种溶剂中,量子点聚集通常会导致外延融合,从而导致降低器件性能的陷阱状态。在这里,我们展示了一种新的策略,通过在量子点表面构建由氢键和π相互作用共同构建的弱静电网络结构来增强油墨的稳定性,提供了一个稳定的环境,防止量子点聚集和外延融合。优化后的表面结构使油墨膜的乌尔巴赫能量降低13%,陷阱态密度降低50%,载流子寿命延长107%,载流子传输和提取能力显著增强。通过这种方法,PbS QD太阳能电池可以实现13%的功率转换效率,并且在空气中储存时可以保持1000小时以上的稳定性而无需封装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Weak Electrostatic Network Structure Improves PbS Quantum Dot Ink Stability

Weak Electrostatic Network Structure Improves PbS Quantum Dot Ink Stability

Weak Electrostatic Network Structure Improves PbS Quantum Dot Ink Stability

PbS quantum dot (QD) ink stability in polar solvents is critical for high-performance solar cell fabrication. However, QD aggregation in such solvents often leads to epitaxial fusion, resulting in trap states that degrade the device performance. Here, we demonstrate a novel strategy for enhancing ink stability by constructing a weak electrostatic network structure on the QD surface, which is cobuilt by hydrogen bonds and π interactions, providing a stable environment that prevents QD aggregation and epitaxial fusion. The optimized surface structure confers an ink film, with a 13% reduction in Urbach energy, a 50% decrease in trap state density, and a 107% prolongation of carrier lifetime, suggesting significantly enhanced carrier transport and extraction capabilities. With this approach, PbS QD solar cells can achieve a power conversion efficiency of 13% and remain stable for over 1000 h without encapsulation when stored in air.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信