Deveney Dasilva, Nivea Pereira de Sa, Kathryn Takemura, Kalani Jayanetti, Jeehyun Karen You, Nathalia Vieira de Sa, Gabriel Soares Matos, Andy Zhong, Can E. Senkal, Yusuf Hannun, Iwao Ojima, John Mallamo, John B. McCarthy, Maurizio Del Poeta
{"title":"以神经酰胺合酶为靶点开发新型抗真菌药物","authors":"Deveney Dasilva, Nivea Pereira de Sa, Kathryn Takemura, Kalani Jayanetti, Jeehyun Karen You, Nathalia Vieira de Sa, Gabriel Soares Matos, Andy Zhong, Can E. Senkal, Yusuf Hannun, Iwao Ojima, John Mallamo, John B. McCarthy, Maurizio Del Poeta","doi":"10.1016/j.str.2025.05.016","DOIUrl":null,"url":null,"abstract":"Invasive fungal infections (IFIs) caused by pathogenic fungi are a major public health concern, particularly across various immunocompromised populations. Effective clinical management is currently hindered by limited treatment options. Fungal sphingolipids have emerged as potential antifungal targets based on cumulative evidence demonstrating that fungal sphingolipid metabolism is key to the virulence of pathogenic fungi. This study focuses on the sphingolipid metabolizing enzyme ceramide synthase. We developed an enzymatic assay to examine ceramide synthase activity and devised a high-throughput screening platform. Two synthetic compounds were identified that preferentially inhibit the fungal vs. the mammalian ceramide synthase activity. Further studies indicate that these compounds block fungal growth, with <em>in silico</em> and mutagenesis investigations revealing insights into the interactions between the inhibitors and the ceramide synthase active site. Together, our study establishes fungal ceramide synthase as a promising antifungal target and paves the way for new structure-activity relationship studies leveraging fungal sphingolipid metabolism.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"15 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting ceramide synthases for the development of new antifungals\",\"authors\":\"Deveney Dasilva, Nivea Pereira de Sa, Kathryn Takemura, Kalani Jayanetti, Jeehyun Karen You, Nathalia Vieira de Sa, Gabriel Soares Matos, Andy Zhong, Can E. Senkal, Yusuf Hannun, Iwao Ojima, John Mallamo, John B. McCarthy, Maurizio Del Poeta\",\"doi\":\"10.1016/j.str.2025.05.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Invasive fungal infections (IFIs) caused by pathogenic fungi are a major public health concern, particularly across various immunocompromised populations. Effective clinical management is currently hindered by limited treatment options. Fungal sphingolipids have emerged as potential antifungal targets based on cumulative evidence demonstrating that fungal sphingolipid metabolism is key to the virulence of pathogenic fungi. This study focuses on the sphingolipid metabolizing enzyme ceramide synthase. We developed an enzymatic assay to examine ceramide synthase activity and devised a high-throughput screening platform. Two synthetic compounds were identified that preferentially inhibit the fungal vs. the mammalian ceramide synthase activity. Further studies indicate that these compounds block fungal growth, with <em>in silico</em> and mutagenesis investigations revealing insights into the interactions between the inhibitors and the ceramide synthase active site. Together, our study establishes fungal ceramide synthase as a promising antifungal target and paves the way for new structure-activity relationship studies leveraging fungal sphingolipid metabolism.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2025.05.016\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.05.016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeting ceramide synthases for the development of new antifungals
Invasive fungal infections (IFIs) caused by pathogenic fungi are a major public health concern, particularly across various immunocompromised populations. Effective clinical management is currently hindered by limited treatment options. Fungal sphingolipids have emerged as potential antifungal targets based on cumulative evidence demonstrating that fungal sphingolipid metabolism is key to the virulence of pathogenic fungi. This study focuses on the sphingolipid metabolizing enzyme ceramide synthase. We developed an enzymatic assay to examine ceramide synthase activity and devised a high-throughput screening platform. Two synthetic compounds were identified that preferentially inhibit the fungal vs. the mammalian ceramide synthase activity. Further studies indicate that these compounds block fungal growth, with in silico and mutagenesis investigations revealing insights into the interactions between the inhibitors and the ceramide synthase active site. Together, our study establishes fungal ceramide synthase as a promising antifungal target and paves the way for new structure-activity relationship studies leveraging fungal sphingolipid metabolism.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.