等离子体辅助表面氮化质子插层WO3用于高效电催化合成氨

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zhiyuan Zhang, Christopher Kondratowicz, Jacob Smith, Pavel Kucheryavy, Junjie Ouyang, Yijie Xu, Elizabeth Desmet, Sophia Kurdziel, Eddie Tang, Micheal Adeleke, Aditya Dilip Lele, John Mark Martirez, Miaofang Chi, Yiguang Ju, Huixin He
{"title":"等离子体辅助表面氮化质子插层WO3用于高效电催化合成氨","authors":"Zhiyuan Zhang, Christopher Kondratowicz, Jacob Smith, Pavel Kucheryavy, Junjie Ouyang, Yijie Xu, Elizabeth Desmet, Sophia Kurdziel, Eddie Tang, Micheal Adeleke, Aditya Dilip Lele, John Mark Martirez, Miaofang Chi, Yiguang Ju, Huixin He","doi":"10.1021/acsenergylett.5c01034","DOIUrl":null,"url":null,"abstract":"Electrocatalytic nitrogen reduction (eNRR) offers a green pathway for the production of NH<sub>3</sub> from N<sub>2</sub> and H<sub>2</sub>O under ambient conditions. Transition metal oxynitrides (TMO<sub><i>x</i></sub>N<sub><i>y</i></sub>) are among the most promising catalysts but face challenges in achieving a high yield and faradaic efficiency (FE). This work develops a hybrid WO<sub><i>x</i></sub>N<sub><i>y</i></sub>/WO<sub>3</sub> catalyst with a unique heterogeneous interfacial complexion (HIC) structure. This design enables <i>in situ</i> generation and delivery of highly active hydrogen atoms (H*) in acidic electrolytes, promoting nitrogen hydrogenation and the formation of nitrogen vacancies (Nv) on the WO<sub><i>x</i></sub>N<sub><i>y</i></sub> surface. This significantly enhances the selectivity of eNRR for NH<sub>3</sub> synthesis while suppressing the hydrogen evolution reaction (HER). A simple two-step fabrication process─microwave hydrothermal growth followed by plasma-assisted surface nitridation─was developed to fabricate the designed catalyst electrode, achieving an NH<sub>3</sub> yield of 3.2 × 10<sup>–10</sup> mol·cm<sup>–2</sup>·s<sup>–1</sup> with 40.1% FE, outperforming most TMN/TMO<sub><i>x</i></sub>N<sub><i>y</i></sub> electrocatalysts. Multiple control experiments confirm that the eNRR follows an HIC-enhanced Mars–van Krevelen (MvK) mechanism.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 1","pages":""},"PeriodicalIF":18.2000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-Assisted Surface Nitridation of Proton Intercalatable WO3 for Efficient Electrocatalytic Ammonia Synthesis\",\"authors\":\"Zhiyuan Zhang, Christopher Kondratowicz, Jacob Smith, Pavel Kucheryavy, Junjie Ouyang, Yijie Xu, Elizabeth Desmet, Sophia Kurdziel, Eddie Tang, Micheal Adeleke, Aditya Dilip Lele, John Mark Martirez, Miaofang Chi, Yiguang Ju, Huixin He\",\"doi\":\"10.1021/acsenergylett.5c01034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocatalytic nitrogen reduction (eNRR) offers a green pathway for the production of NH<sub>3</sub> from N<sub>2</sub> and H<sub>2</sub>O under ambient conditions. Transition metal oxynitrides (TMO<sub><i>x</i></sub>N<sub><i>y</i></sub>) are among the most promising catalysts but face challenges in achieving a high yield and faradaic efficiency (FE). This work develops a hybrid WO<sub><i>x</i></sub>N<sub><i>y</i></sub>/WO<sub>3</sub> catalyst with a unique heterogeneous interfacial complexion (HIC) structure. This design enables <i>in situ</i> generation and delivery of highly active hydrogen atoms (H*) in acidic electrolytes, promoting nitrogen hydrogenation and the formation of nitrogen vacancies (Nv) on the WO<sub><i>x</i></sub>N<sub><i>y</i></sub> surface. This significantly enhances the selectivity of eNRR for NH<sub>3</sub> synthesis while suppressing the hydrogen evolution reaction (HER). A simple two-step fabrication process─microwave hydrothermal growth followed by plasma-assisted surface nitridation─was developed to fabricate the designed catalyst electrode, achieving an NH<sub>3</sub> yield of 3.2 × 10<sup>–10</sup> mol·cm<sup>–2</sup>·s<sup>–1</sup> with 40.1% FE, outperforming most TMN/TMO<sub><i>x</i></sub>N<sub><i>y</i></sub> electrocatalysts. Multiple control experiments confirm that the eNRR follows an HIC-enhanced Mars–van Krevelen (MvK) mechanism.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.5c01034\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c01034","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电催化氮还原(eNRR)为环境条件下N2和H2O生成NH3提供了一条绿色途径。过渡金属氮氧化物(TMOxNy)是最有前途的催化剂之一,但在实现高产率和法拉第效率(FE)方面面临挑战。本研究开发了一种具有独特非均相界面肤色(HIC)结构的WOxNy/WO3杂化催化剂。这种设计能够在酸性电解质中原位生成和传递高活性氢原子(H*),促进氮氢化和在WOxNy表面形成氮空位(Nv)。这显著提高了eNRR对NH3合成的选择性,同时抑制了析氢反应(HER)。采用微波水热生长-等离子体辅助表面氮化两步制备工艺制备了所设计的催化剂电极,其NH3产率为3.2 × 10-10 mol·cm-2·s-1, FE为40.1%,优于大多数TMN/TMOxNy电催化剂。多个对照实验证实,eNRR遵循hic增强的Mars-van Krevelen (MvK)机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasma-Assisted Surface Nitridation of Proton Intercalatable WO3 for Efficient Electrocatalytic Ammonia Synthesis

Plasma-Assisted Surface Nitridation of Proton Intercalatable WO3 for Efficient Electrocatalytic Ammonia Synthesis
Electrocatalytic nitrogen reduction (eNRR) offers a green pathway for the production of NH3 from N2 and H2O under ambient conditions. Transition metal oxynitrides (TMOxNy) are among the most promising catalysts but face challenges in achieving a high yield and faradaic efficiency (FE). This work develops a hybrid WOxNy/WO3 catalyst with a unique heterogeneous interfacial complexion (HIC) structure. This design enables in situ generation and delivery of highly active hydrogen atoms (H*) in acidic electrolytes, promoting nitrogen hydrogenation and the formation of nitrogen vacancies (Nv) on the WOxNy surface. This significantly enhances the selectivity of eNRR for NH3 synthesis while suppressing the hydrogen evolution reaction (HER). A simple two-step fabrication process─microwave hydrothermal growth followed by plasma-assisted surface nitridation─was developed to fabricate the designed catalyst electrode, achieving an NH3 yield of 3.2 × 10–10 mol·cm–2·s–1 with 40.1% FE, outperforming most TMN/TMOxNy electrocatalysts. Multiple control experiments confirm that the eNRR follows an HIC-enhanced Mars–van Krevelen (MvK) mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信