{"title":"KRb、NaK和NaRb中所选([公式省略]-[公式省略])[公式省略][公式省略]荧光带的超精细结构和线强度","authors":"V. Stoyanov, A. Pashov","doi":"10.1016/j.jqsrt.2025.109558","DOIUrl":null,"url":null,"abstract":"<div><div>In a series of previous experiments laser induced fluorescence from the mixed <span><math><mrow><msup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msup><mi>Π</mi></mrow></math></span>-<span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> states in alkali metal dimers was used to study their lowest triplet state <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>. The fluorescence lines show structure which was attributed mainly to the hyperfine splitting of the <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> levels. Only the recorded spectra of KRb (Pashov et al., 2007) demonstrated noticeable hyperfine structure of the <span><math><mrow><msup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msup><mi>Π</mi></mrow></math></span>-<span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> levels. In this study we used experimental data on the structure of <span><math><mrow><msup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msup><mi>Π</mi></mrow></math></span>-<span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> levels available in the literature for NaK, NaRb and KRb and performed calculations on the profiles of the spectral transitions to the <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> state. It was shown that it is not the hyperfine structure of <span><math><mrow><mo>(</mo><mi>B</mi><mo>−</mo><mi>c</mi><mo>)</mo></mrow></math></span> levels which makes the KRb case different from the other alkali metal molecules in those studies, but it is a coincidence of molecular structure and Doppler broadening, which leads to nonuniform population of the hyperfine components of the <span><math><mrow><mo>(</mo><mi>B</mi><mo>−</mo><mi>c</mi><mo>)</mo></mrow></math></span> levels. This effect becomes stronger when the hyperfine splitting approaches and even exceeds the Doppler width of the exciting <span><math><mrow><mi>X</mi><mo>→</mo><mrow><mo>(</mo><mi>B</mi><mo>−</mo><mi>c</mi><mo>)</mo></mrow></mrow></math></span> transitions. At lower instrumental resolution, however, the effect could be washed out and this may be the reason why it was not reported in all fluorescence studies of the <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> states through the complex of <span><math><mrow><msup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msup><mi>Π</mi></mrow></math></span>-<span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> states.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"345 ","pages":"Article 109558"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperfine structure and line intensities of selected (B1Π-c3Σ+)→ a3Σ+ fluorescence bands in KRb, NaK and NaRb\",\"authors\":\"V. Stoyanov, A. Pashov\",\"doi\":\"10.1016/j.jqsrt.2025.109558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In a series of previous experiments laser induced fluorescence from the mixed <span><math><mrow><msup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msup><mi>Π</mi></mrow></math></span>-<span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> states in alkali metal dimers was used to study their lowest triplet state <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>. The fluorescence lines show structure which was attributed mainly to the hyperfine splitting of the <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> levels. Only the recorded spectra of KRb (Pashov et al., 2007) demonstrated noticeable hyperfine structure of the <span><math><mrow><msup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msup><mi>Π</mi></mrow></math></span>-<span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> levels. In this study we used experimental data on the structure of <span><math><mrow><msup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msup><mi>Π</mi></mrow></math></span>-<span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> levels available in the literature for NaK, NaRb and KRb and performed calculations on the profiles of the spectral transitions to the <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> state. It was shown that it is not the hyperfine structure of <span><math><mrow><mo>(</mo><mi>B</mi><mo>−</mo><mi>c</mi><mo>)</mo></mrow></math></span> levels which makes the KRb case different from the other alkali metal molecules in those studies, but it is a coincidence of molecular structure and Doppler broadening, which leads to nonuniform population of the hyperfine components of the <span><math><mrow><mo>(</mo><mi>B</mi><mo>−</mo><mi>c</mi><mo>)</mo></mrow></math></span> levels. This effect becomes stronger when the hyperfine splitting approaches and even exceeds the Doppler width of the exciting <span><math><mrow><mi>X</mi><mo>→</mo><mrow><mo>(</mo><mi>B</mi><mo>−</mo><mi>c</mi><mo>)</mo></mrow></mrow></math></span> transitions. At lower instrumental resolution, however, the effect could be washed out and this may be the reason why it was not reported in all fluorescence studies of the <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> states through the complex of <span><math><mrow><msup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msup><mi>Π</mi></mrow></math></span>-<span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> states.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"345 \",\"pages\":\"Article 109558\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407325002201\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407325002201","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
在之前的一系列实验中,激光诱导荧光从碱金属二聚体的混合B1Π-c3Σ+状态研究它们的最低三重态a3Σ+。荧光线显示的结构主要归因于a3Σ+水平的超细分裂。只有记录的KRb光谱(Pashov et al., 2007)显示出明显的B1Π-c3Σ+能级超精细结构。在本研究中,我们使用了NaK、NaRb和KRb的文献中提供的B1Π-c3Σ+能级结构的实验数据,并计算了光谱跃迁到a3Σ+态的分布。结果表明,KRb与其他碱金属分子的不同之处并不在于(B−c)能级的超精细结构,而在于分子结构和多普勒展宽的巧合,从而导致了(B−c)能级超精细组分的不均匀分布。当超细分裂接近甚至超过激发X→(B−c)跃迁的多普勒宽度时,这种效应变得更强。然而,在较低的仪器分辨率下,这种效应可能会被抵消,这可能是没有在所有通过B1Π-c3Σ+态络合物对a3Σ+态进行的荧光研究中报道的原因。
Hyperfine structure and line intensities of selected (B1Π-c3Σ+)→ a3Σ+ fluorescence bands in KRb, NaK and NaRb
In a series of previous experiments laser induced fluorescence from the mixed - states in alkali metal dimers was used to study their lowest triplet state . The fluorescence lines show structure which was attributed mainly to the hyperfine splitting of the levels. Only the recorded spectra of KRb (Pashov et al., 2007) demonstrated noticeable hyperfine structure of the - levels. In this study we used experimental data on the structure of - levels available in the literature for NaK, NaRb and KRb and performed calculations on the profiles of the spectral transitions to the state. It was shown that it is not the hyperfine structure of levels which makes the KRb case different from the other alkali metal molecules in those studies, but it is a coincidence of molecular structure and Doppler broadening, which leads to nonuniform population of the hyperfine components of the levels. This effect becomes stronger when the hyperfine splitting approaches and even exceeds the Doppler width of the exciting transitions. At lower instrumental resolution, however, the effect could be washed out and this may be the reason why it was not reported in all fluorescence studies of the states through the complex of - states.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.