{"title":"ScO低洼电子态的理论研究","authors":"Dongling He, Chaofan Li, Wenli Zou","doi":"10.1016/j.jqsrt.2025.109559","DOIUrl":null,"url":null,"abstract":"<div><div>The scandium monoxide (ScO) molecule is a significant astrophysical species, which exhibits a rich distribution of electronic states. Experimental investigations have identified six <span><math><mi>Λ</mi></math></span>-S electronic states lying below 30000 cm<sup>−1</sup> along with their nine <span><math><mi>Ω</mi></math></span> sub-states, including <span><math><mrow><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>, <span><math><mrow><msup><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Δ</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msup><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>, <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math></span>, and <span><math><mrow><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>, arranged in order of increasing energy. This study employs the multi-reference second-order perturbation theory, incorporating scalar relativistic effects and spin–orbit coupling effects, to compute all the low-lying electronic states of ScO below 40000 cm<sup>−1</sup>. From the potential energy curves and transition dipole moments of 30 <span><math><mi>Λ</mi></math></span>-S states and the corresponding 65 <span><math><mi>Ω</mi></math></span> states, we have derived spectroscopic constants and radiative lifetimes that generally agree well with the available experimental data. Our theoretical results not only enhance the understanding of the electronic structure of ScO but also serve as a foundation for future spectroscopic investigations of ScO.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"345 ","pages":"Article 109559"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical study on the low-lying electronic states of ScO\",\"authors\":\"Dongling He, Chaofan Li, Wenli Zou\",\"doi\":\"10.1016/j.jqsrt.2025.109559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The scandium monoxide (ScO) molecule is a significant astrophysical species, which exhibits a rich distribution of electronic states. Experimental investigations have identified six <span><math><mi>Λ</mi></math></span>-S electronic states lying below 30000 cm<sup>−1</sup> along with their nine <span><math><mi>Ω</mi></math></span> sub-states, including <span><math><mrow><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>, <span><math><mrow><msup><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Δ</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msup><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>, <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math></span>, and <span><math><mrow><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>, arranged in order of increasing energy. This study employs the multi-reference second-order perturbation theory, incorporating scalar relativistic effects and spin–orbit coupling effects, to compute all the low-lying electronic states of ScO below 40000 cm<sup>−1</sup>. From the potential energy curves and transition dipole moments of 30 <span><math><mi>Λ</mi></math></span>-S states and the corresponding 65 <span><math><mi>Ω</mi></math></span> states, we have derived spectroscopic constants and radiative lifetimes that generally agree well with the available experimental data. Our theoretical results not only enhance the understanding of the electronic structure of ScO but also serve as a foundation for future spectroscopic investigations of ScO.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"345 \",\"pages\":\"Article 109559\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407325002213\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407325002213","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
一氧化钪(ScO)分子是一种重要的天体物理物质,具有丰富的电子态分布。实验研究已经确定了位于30000 cm−1以下的6个Λ-S电子态及其9个Ω子态,包括X2Σ+, A ' 2Δ3/2,5/2, A2Π1/2,3/2, B2Σ+, C2Π3/2,1/2和D2Σ+,按能量增加的顺序排列。本研究采用多参考二阶微扰理论,结合标量相对论效应和自旋轨道耦合效应,计算了ScO在40000 cm−1以下的所有低空电子态。从30个Λ-S态和对应的65个Ω态的势能曲线和跃迁偶极矩,我们得到了与现有实验数据基本一致的光谱常数和辐射寿命。我们的理论结果不仅增强了对ScO电子结构的理解,而且为未来ScO的光谱研究奠定了基础。
Theoretical study on the low-lying electronic states of ScO
The scandium monoxide (ScO) molecule is a significant astrophysical species, which exhibits a rich distribution of electronic states. Experimental investigations have identified six -S electronic states lying below 30000 cm−1 along with their nine sub-states, including , , , , , and , arranged in order of increasing energy. This study employs the multi-reference second-order perturbation theory, incorporating scalar relativistic effects and spin–orbit coupling effects, to compute all the low-lying electronic states of ScO below 40000 cm−1. From the potential energy curves and transition dipole moments of 30 -S states and the corresponding 65 states, we have derived spectroscopic constants and radiative lifetimes that generally agree well with the available experimental data. Our theoretical results not only enhance the understanding of the electronic structure of ScO but also serve as a foundation for future spectroscopic investigations of ScO.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.