向列型液晶中光诱导相变引起的微孔板主动迁移

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Antonio Tavera‐Vázquez, Danai Montalvan‐Sorrosa, Gustavo R. Perez‐Lemus, Otilio E. Rodriguez‐Lopez, Jose A. Martinez‐Gonzalez, Vinothan N. Manoharan, Juan J. de Pablo
{"title":"向列型液晶中光诱导相变引起的微孔板主动迁移","authors":"Antonio Tavera‐Vázquez, Danai Montalvan‐Sorrosa, Gustavo R. Perez‐Lemus, Otilio E. Rodriguez‐Lopez, Jose A. Martinez‐Gonzalez, Vinothan N. Manoharan, Juan J. de Pablo","doi":"10.1002/adfm.202504046","DOIUrl":null,"url":null,"abstract":"Achieving precise control over the diverse equilibrium configurations and corresponding optical textures of motile liquid crystals (LCs) in response to a wide range of external stimuli is a formidable challenge. This complexity becomes even more intriguing when applied to far‐from‐equilibrium systems. In this work, we investigate how LC phase transitions are leveraged to achieve controlled self‐propulsion of colloids. To accomplish that, we designed quasi‐2D solid, micron‐sized, light‐absorbing platelets suspended in a thermotropic nematic LC. When exposed to light, these platelets self‐propel, generating localized nematic‐isotropic (NI) phase transitions. The system's dynamics are governed by temperature, light intensity, and confinement, giving rise to three regimes: a large 2D regime where the platelet‐isotropic phase bubble remains stationary with a stable NI interface; a compact motile‐2D regime where the NI interface is closer to the platelet; and a motile‐3D confinement regime, marked by the appearance of multipolar LC configurations. Furthermore, we employed continuum mean‐field simulations to predict stable platelet‐LC states in slab confinements. The approach gives insights crucial for designing far‐from‐equilibrium synthetic systems with controlled propulsion and tunable topological reconfigurations. This has implications for advancements in photonics and material sciences.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"8 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplate Active Migration Emerging From Light‐Induced Phase Transitions in a Nematic Liquid Crystal\",\"authors\":\"Antonio Tavera‐Vázquez, Danai Montalvan‐Sorrosa, Gustavo R. Perez‐Lemus, Otilio E. Rodriguez‐Lopez, Jose A. Martinez‐Gonzalez, Vinothan N. Manoharan, Juan J. de Pablo\",\"doi\":\"10.1002/adfm.202504046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving precise control over the diverse equilibrium configurations and corresponding optical textures of motile liquid crystals (LCs) in response to a wide range of external stimuli is a formidable challenge. This complexity becomes even more intriguing when applied to far‐from‐equilibrium systems. In this work, we investigate how LC phase transitions are leveraged to achieve controlled self‐propulsion of colloids. To accomplish that, we designed quasi‐2D solid, micron‐sized, light‐absorbing platelets suspended in a thermotropic nematic LC. When exposed to light, these platelets self‐propel, generating localized nematic‐isotropic (NI) phase transitions. The system's dynamics are governed by temperature, light intensity, and confinement, giving rise to three regimes: a large 2D regime where the platelet‐isotropic phase bubble remains stationary with a stable NI interface; a compact motile‐2D regime where the NI interface is closer to the platelet; and a motile‐3D confinement regime, marked by the appearance of multipolar LC configurations. Furthermore, we employed continuum mean‐field simulations to predict stable platelet‐LC states in slab confinements. The approach gives insights crucial for designing far‐from‐equilibrium synthetic systems with controlled propulsion and tunable topological reconfigurations. This has implications for advancements in photonics and material sciences.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202504046\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202504046","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在广泛的外界刺激下,如何精确控制运动液晶的各种平衡结构和相应的光学结构是一个艰巨的挑战。当应用于远非平衡系统时,这种复杂性变得更加有趣。在这项工作中,我们研究了如何利用LC相变来实现胶体的可控自推进。为了实现这一目标,我们设计了准二维固体,微米大小,光吸收血小板悬浮在热致向列相LC中。当暴露在光线下时,这些血小板自我推进,产生局部向列-各向同性(NI)相变。系统的动力学受温度、光强和约束的控制,产生三种状态:一个大的二维状态,其中血小板-各向同性相泡保持稳定,具有稳定的NI界面;紧凑的移动- 2D状态,NI界面更靠近血小板;以及以多极LC结构的出现为标志的可移动- 3D约束体系。此外,我们采用连续平均场模拟来预测板坯约束下稳定的血小板- LC状态。该方法为设计具有控制推进和可调拓扑重构的远非平衡合成系统提供了至关重要的见解。这对光子学和材料科学的进步有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microplate Active Migration Emerging From Light‐Induced Phase Transitions in a Nematic Liquid Crystal
Achieving precise control over the diverse equilibrium configurations and corresponding optical textures of motile liquid crystals (LCs) in response to a wide range of external stimuli is a formidable challenge. This complexity becomes even more intriguing when applied to far‐from‐equilibrium systems. In this work, we investigate how LC phase transitions are leveraged to achieve controlled self‐propulsion of colloids. To accomplish that, we designed quasi‐2D solid, micron‐sized, light‐absorbing platelets suspended in a thermotropic nematic LC. When exposed to light, these platelets self‐propel, generating localized nematic‐isotropic (NI) phase transitions. The system's dynamics are governed by temperature, light intensity, and confinement, giving rise to three regimes: a large 2D regime where the platelet‐isotropic phase bubble remains stationary with a stable NI interface; a compact motile‐2D regime where the NI interface is closer to the platelet; and a motile‐3D confinement regime, marked by the appearance of multipolar LC configurations. Furthermore, we employed continuum mean‐field simulations to predict stable platelet‐LC states in slab confinements. The approach gives insights crucial for designing far‐from‐equilibrium synthetic systems with controlled propulsion and tunable topological reconfigurations. This has implications for advancements in photonics and material sciences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信