具有高倍率和高面积容量性能的全固态锂金属电池的超薄锂磷硫(LPS)界面电解质层

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Su, Yuxi Deng, Yu Luo, Zhaoyu Rong, Yuteng Fan, Cong Zhong, Fucheng Ren, Xiangsi Liu, Yuqi Wu, Kangjun Wang, Yong Cheng, Haoyue Zhong, Jun Zhao, Mingsheng Wang, Xuefeng Wang, Jianyu Huang, Jiawei Yan, Yong Yang
{"title":"具有高倍率和高面积容量性能的全固态锂金属电池的超薄锂磷硫(LPS)界面电解质层","authors":"Yu Su, Yuxi Deng, Yu Luo, Zhaoyu Rong, Yuteng Fan, Cong Zhong, Fucheng Ren, Xiangsi Liu, Yuqi Wu, Kangjun Wang, Yong Cheng, Haoyue Zhong, Jun Zhao, Mingsheng Wang, Xuefeng Wang, Jianyu Huang, Jiawei Yan, Yong Yang","doi":"10.1002/adfm.202509820","DOIUrl":null,"url":null,"abstract":"To solve the challenging interfacial issues of all‐solid‐state lithium batteries (ASSLBs), a novel strategy to construct a nano‐scale lithium‐phosphorus‐sulfur (LPS) electrolyte film by atomic layer deposition (ALD) technique and to coat it on Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl (LPSCl) electrolyte is proposed and demonstrated for the first time. The modified LPS@LPSCl electrolytes exhibit excellent compatibility with both high‐voltage cathodes and pure lithium metal anode with enhanced ionic conductivity, much reduced electronic conductivity, and modified mechanical strength, which can fill the gaps in the base electrolytes after electrolyte pellet pressing and reduce interfacial defects in the composite electrolytes. The sulfide‐based ASSLBs, assembled with LPS@LPSCl, Al‐GL@NCM811 materials, and a lithium indium anode, achieves a high areal capacity of 10.6 mAh cm<jats:sup>−2</jats:sup> at high‐temperature and high mass loading (60 °C, 51.9 mg cm<jats:sup>−2</jats:sup>). Additionally, LPS@LPSCl has high stability toward lithium metal, suppressing interfacial side reactions and improving physical contact, enabling charge and discharge testing at a high current density of 1.5 mA cm<jats:sup>−2</jats:sup>. This study demonstrates that the nano‐scaled film formation of sulfide solid‐state electrolytes can significantly reduce the polarization voltage of traditional double‐layer electrolytes toward lithium metal, and provide a new approach for interfacial modification in sulfide solid‐state batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"32 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra‐Thin Lithium–Phosphorus–Sulfur (LPS) Interfacial Electrolyte Layer for All‐Solid‐State Lithium Metal Battery with High‐Rate and High‐Areal‐Capacity Performance\",\"authors\":\"Yu Su, Yuxi Deng, Yu Luo, Zhaoyu Rong, Yuteng Fan, Cong Zhong, Fucheng Ren, Xiangsi Liu, Yuqi Wu, Kangjun Wang, Yong Cheng, Haoyue Zhong, Jun Zhao, Mingsheng Wang, Xuefeng Wang, Jianyu Huang, Jiawei Yan, Yong Yang\",\"doi\":\"10.1002/adfm.202509820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the challenging interfacial issues of all‐solid‐state lithium batteries (ASSLBs), a novel strategy to construct a nano‐scale lithium‐phosphorus‐sulfur (LPS) electrolyte film by atomic layer deposition (ALD) technique and to coat it on Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl (LPSCl) electrolyte is proposed and demonstrated for the first time. The modified LPS@LPSCl electrolytes exhibit excellent compatibility with both high‐voltage cathodes and pure lithium metal anode with enhanced ionic conductivity, much reduced electronic conductivity, and modified mechanical strength, which can fill the gaps in the base electrolytes after electrolyte pellet pressing and reduce interfacial defects in the composite electrolytes. The sulfide‐based ASSLBs, assembled with LPS@LPSCl, Al‐GL@NCM811 materials, and a lithium indium anode, achieves a high areal capacity of 10.6 mAh cm<jats:sup>−2</jats:sup> at high‐temperature and high mass loading (60 °C, 51.9 mg cm<jats:sup>−2</jats:sup>). Additionally, LPS@LPSCl has high stability toward lithium metal, suppressing interfacial side reactions and improving physical contact, enabling charge and discharge testing at a high current density of 1.5 mA cm<jats:sup>−2</jats:sup>. This study demonstrates that the nano‐scaled film formation of sulfide solid‐state electrolytes can significantly reduce the polarization voltage of traditional double‐layer electrolytes toward lithium metal, and provide a new approach for interfacial modification in sulfide solid‐state batteries.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202509820\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509820","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决全固态锂电池(ASSLBs)具有挑战性的界面问题,首次提出了一种利用原子层沉积(ALD)技术构建纳米级锂磷硫(LPS)电解质膜并将其涂覆在Li6PS5Cl (LPSCl)电解质上的新策略。改性后的LPS@LPSCl电解质与高压阴极和纯锂金属阳极均表现出良好的相容性,离子电导率提高,电子电导率大大降低,机械强度也得到了改善,可以填补电解液球团压后碱性电解质的空白,减少复合电解质的界面缺陷。这种硫化物基asslb由LPS@LPSCl、Al - GL@NCM811材料和锂铟阳极组装而成,在高温和高质量负载(60°C, 51.9 mg cm - 2)下可获得10.6 mAh cm - 2的高面容量。此外,LPS@LPSCl对锂金属具有很高的稳定性,可以抑制界面副反应并改善物理接触,从而可以在1.5 mA cm−2的高电流密度下进行充放电测试。研究表明,硫化固体电解质的纳米膜形成可以显著降低传统双层电解质对锂金属的极化电压,为硫化固体电池的界面改性提供了一种新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra‐Thin Lithium–Phosphorus–Sulfur (LPS) Interfacial Electrolyte Layer for All‐Solid‐State Lithium Metal Battery with High‐Rate and High‐Areal‐Capacity Performance
To solve the challenging interfacial issues of all‐solid‐state lithium batteries (ASSLBs), a novel strategy to construct a nano‐scale lithium‐phosphorus‐sulfur (LPS) electrolyte film by atomic layer deposition (ALD) technique and to coat it on Li6PS5Cl (LPSCl) electrolyte is proposed and demonstrated for the first time. The modified LPS@LPSCl electrolytes exhibit excellent compatibility with both high‐voltage cathodes and pure lithium metal anode with enhanced ionic conductivity, much reduced electronic conductivity, and modified mechanical strength, which can fill the gaps in the base electrolytes after electrolyte pellet pressing and reduce interfacial defects in the composite electrolytes. The sulfide‐based ASSLBs, assembled with LPS@LPSCl, Al‐GL@NCM811 materials, and a lithium indium anode, achieves a high areal capacity of 10.6 mAh cm−2 at high‐temperature and high mass loading (60 °C, 51.9 mg cm−2). Additionally, LPS@LPSCl has high stability toward lithium metal, suppressing interfacial side reactions and improving physical contact, enabling charge and discharge testing at a high current density of 1.5 mA cm−2. This study demonstrates that the nano‐scaled film formation of sulfide solid‐state electrolytes can significantly reduce the polarization voltage of traditional double‐layer electrolytes toward lithium metal, and provide a new approach for interfacial modification in sulfide solid‐state batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信