分子工程使原位三维交联和热电化学稳定的聚(1,3 -二恶烷)固体聚合物电解质成为可能

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-23 DOI:10.1002/smll.202504201
Keding Chen, Xiaolong Shi, Yanghuan Shen, Bin Gou, Li Yang, Yingdong Li, Jin Gong, Yu Wang, Jingchao Chai, Yun Zheng, Wei Zhang, Zhihong Liu
{"title":"分子工程使原位三维交联和热电化学稳定的聚(1,3 -二恶烷)固体聚合物电解质成为可能","authors":"Keding Chen,&nbsp;Xiaolong Shi,&nbsp;Yanghuan Shen,&nbsp;Bin Gou,&nbsp;Li Yang,&nbsp;Yingdong Li,&nbsp;Jin Gong,&nbsp;Yu Wang,&nbsp;Jingchao Chai,&nbsp;Yun Zheng,&nbsp;Wei Zhang,&nbsp;Zhihong Liu","doi":"10.1002/smll.202504201","DOIUrl":null,"url":null,"abstract":"<p>The narrow electrochemical stability window (ESW) and poor thermal stability of poly(1,3-dioxolane) (PDOL) solid polymer electrolyte severely restrict its application. In this study, poly(1,3-dioxolane) dimethacrylate (PDOL-DMA) is designed and synthesized to replace the unstable terminal hydroxyl groups with unsaturated C═C double bond. The cross-linked quasi-solid electrolyte (CPDOL-DMA QSE) demonstrates a wide ESW of 4.5 V versus Li<sup>+</sup>/Li and a high Li<sup>+</sup> transference number of 0.64. This crosslinked network facilitates lithium salt dissociation, weakens Li<sup>+</sup>-polymer interactions, and achieves the reversibility of lithium metal anode disolution/deposition. For CPDOL-DMA QSE, capacity retention is 83% after the 400th cycle at 25 °C. Moreover, it can perform stable cycling with 82% retention after 200 cycles at an elevated temperature of 80 °C. Due to the high oxygen content of the repeating units in CPDOL-DMA, microcalorimetry and accelerated calorimetry results further confirm the high safety of the CPDOL-DMA QSE. This work provides insights into the design of polyether polymer electrolytes with high oxygen contents, realizing thermo-electrochemical stability in lithium metal batteries.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 33","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Engineering Enabled In Situ 3D Cross-Linked and Thermo-Electrochemically Stable Poly(1,3-dioxolane) Solid Polymer Electrolyte\",\"authors\":\"Keding Chen,&nbsp;Xiaolong Shi,&nbsp;Yanghuan Shen,&nbsp;Bin Gou,&nbsp;Li Yang,&nbsp;Yingdong Li,&nbsp;Jin Gong,&nbsp;Yu Wang,&nbsp;Jingchao Chai,&nbsp;Yun Zheng,&nbsp;Wei Zhang,&nbsp;Zhihong Liu\",\"doi\":\"10.1002/smll.202504201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The narrow electrochemical stability window (ESW) and poor thermal stability of poly(1,3-dioxolane) (PDOL) solid polymer electrolyte severely restrict its application. In this study, poly(1,3-dioxolane) dimethacrylate (PDOL-DMA) is designed and synthesized to replace the unstable terminal hydroxyl groups with unsaturated C═C double bond. The cross-linked quasi-solid electrolyte (CPDOL-DMA QSE) demonstrates a wide ESW of 4.5 V versus Li<sup>+</sup>/Li and a high Li<sup>+</sup> transference number of 0.64. This crosslinked network facilitates lithium salt dissociation, weakens Li<sup>+</sup>-polymer interactions, and achieves the reversibility of lithium metal anode disolution/deposition. For CPDOL-DMA QSE, capacity retention is 83% after the 400th cycle at 25 °C. Moreover, it can perform stable cycling with 82% retention after 200 cycles at an elevated temperature of 80 °C. Due to the high oxygen content of the repeating units in CPDOL-DMA, microcalorimetry and accelerated calorimetry results further confirm the high safety of the CPDOL-DMA QSE. This work provides insights into the design of polyether polymer electrolytes with high oxygen contents, realizing thermo-electrochemical stability in lithium metal batteries.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 33\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202504201\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202504201","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚(1,3‐二恶烷)(PDOL)固体聚合物电解质的电化学稳定窗口(ESW)窄和热稳定性差严重限制了其应用。在这项研究中,设计并合成了聚(1,3‐二氧氧烷)二甲基丙烯酸酯(PDOL‐DMA),用不饱和的C = C双键取代不稳定的末端羟基。该交联准固体电解质(CPDOL‐DMA QSE)与Li+/Li相比具有4.5 V的宽ESW和0.64的高Li+转移数。这种交联网络有利于锂盐解离,减弱Li+ -聚合物的相互作用,实现了锂金属阳极溶解/沉积的可逆性。对于CPDOL‐DMA QSE,在25°C下进行第400次循环后,容量保留率为83%。此外,在80℃的高温下循环200次后,它可以保持82%的稳定性。由于CPDOL‐DMA重复单元的高氧含量,微量热法和加速量热法的结果进一步证实了CPDOL‐DMA QSE的高安全性。这项工作为高氧含量聚醚聚合物电解质的设计提供了见解,实现了锂金属电池的热电化学稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular Engineering Enabled In Situ 3D Cross-Linked and Thermo-Electrochemically Stable Poly(1,3-dioxolane) Solid Polymer Electrolyte

Molecular Engineering Enabled In Situ 3D Cross-Linked and Thermo-Electrochemically Stable Poly(1,3-dioxolane) Solid Polymer Electrolyte

The narrow electrochemical stability window (ESW) and poor thermal stability of poly(1,3-dioxolane) (PDOL) solid polymer electrolyte severely restrict its application. In this study, poly(1,3-dioxolane) dimethacrylate (PDOL-DMA) is designed and synthesized to replace the unstable terminal hydroxyl groups with unsaturated C═C double bond. The cross-linked quasi-solid electrolyte (CPDOL-DMA QSE) demonstrates a wide ESW of 4.5 V versus Li+/Li and a high Li+ transference number of 0.64. This crosslinked network facilitates lithium salt dissociation, weakens Li+-polymer interactions, and achieves the reversibility of lithium metal anode disolution/deposition. For CPDOL-DMA QSE, capacity retention is 83% after the 400th cycle at 25 °C. Moreover, it can perform stable cycling with 82% retention after 200 cycles at an elevated temperature of 80 °C. Due to the high oxygen content of the repeating units in CPDOL-DMA, microcalorimetry and accelerated calorimetry results further confirm the high safety of the CPDOL-DMA QSE. This work provides insights into the design of polyether polymer electrolytes with high oxygen contents, realizing thermo-electrochemical stability in lithium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信