镍氧化物/酞菁钴作为高效稳定的倒钙钛矿太阳能电池的空穴传输双层材料

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-23 DOI:10.1002/smll.202501794
Meiirkhan Beisembekov, Aitbek Aimukhanov, Serzhan Tazhibayev, Dosmukhammed Abeuov, Assylbek Zeinidenov
{"title":"镍氧化物/酞菁钴作为高效稳定的倒钙钛矿太阳能电池的空穴传输双层材料","authors":"Meiirkhan Beisembekov, Aitbek Aimukhanov, Serzhan Tazhibayev, Dosmukhammed Abeuov, Assylbek Zeinidenov","doi":"10.1002/smll.202501794","DOIUrl":null,"url":null,"abstract":"This study demonstrates that the use of bilayer films based on nickel oxide (NiO<jats:sub>x</jats:sub>;) and cobalt phthalocyanine (CoPc) represents a promising hole transport layer (HTLs) for inverted perovskite solar cells (PSCs). NiO<jats:sub>x</jats:sub>; films are fabricated using the spin‐coating method from a sol–gel solution. Films (CoPc<jats:sub>evap</jats:sub>) and nanowires (CoPc<jats:sub>nws</jats:sub>) on the NiO<jats:sub>x</jats:sub>; surface are produced by thermal sputtering and physical gradient‐temperature vapor deposition. It is demonstrated that PSCs with a NiO<jats:sub>x</jats:sub>; layer exhibit a power conversion efficiency (PCE) of only 18,1%. The incorporation of a CoPc<jats:sub>evap</jats:sub> intermediate layer between NiO<jats:sub>x</jats:sub>; and the perovskite increases the PCE to 19.1%. The highest PCE, reaching 20.7%, is achieved with a bilayer HTLs based on NiO<jats:sub>x</jats:sub>;/CoPc<jats:sub>nws</jats:sub>. Analysis of the PSC impedance spectra shows that the CoPc<jats:sub>nws</jats:sub> intermediate layer reduces the HTLs resistance and increases the recombination resistance at the perovskite/HTLs interface, which extends the effective lifetime of charge carriers. The stability of NiO<jats:sub>x</jats:sub>;‐based PSCs is 48%, while PSCs with bilayer HTLs based on NiO<jats:sub>x</jats:sub>;/CoPc<jats:sub>nws</jats:sub> and NiO<jats:sub>x</jats:sub>;/CoPc<jats:sub>evap</jats:sub> exhibits higher stability of 71% and 90% over 600 hours. The results demonstrated that solar cells based on NiO<jats:sub>x</jats:sub>;/CoPc inhibit the perovskite degradation process and reduce charge recombination, thereby improving the performance and stability of the inverted PSCs.","PeriodicalId":228,"journal":{"name":"Small","volume":"15 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nickel Oxide/Cobalt Phthalocyanine as a Hole Transport Bilayer for Efficient and Stable Inverted Perovskite Solar Cells\",\"authors\":\"Meiirkhan Beisembekov, Aitbek Aimukhanov, Serzhan Tazhibayev, Dosmukhammed Abeuov, Assylbek Zeinidenov\",\"doi\":\"10.1002/smll.202501794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study demonstrates that the use of bilayer films based on nickel oxide (NiO<jats:sub>x</jats:sub>;) and cobalt phthalocyanine (CoPc) represents a promising hole transport layer (HTLs) for inverted perovskite solar cells (PSCs). NiO<jats:sub>x</jats:sub>; films are fabricated using the spin‐coating method from a sol–gel solution. Films (CoPc<jats:sub>evap</jats:sub>) and nanowires (CoPc<jats:sub>nws</jats:sub>) on the NiO<jats:sub>x</jats:sub>; surface are produced by thermal sputtering and physical gradient‐temperature vapor deposition. It is demonstrated that PSCs with a NiO<jats:sub>x</jats:sub>; layer exhibit a power conversion efficiency (PCE) of only 18,1%. The incorporation of a CoPc<jats:sub>evap</jats:sub> intermediate layer between NiO<jats:sub>x</jats:sub>; and the perovskite increases the PCE to 19.1%. The highest PCE, reaching 20.7%, is achieved with a bilayer HTLs based on NiO<jats:sub>x</jats:sub>;/CoPc<jats:sub>nws</jats:sub>. Analysis of the PSC impedance spectra shows that the CoPc<jats:sub>nws</jats:sub> intermediate layer reduces the HTLs resistance and increases the recombination resistance at the perovskite/HTLs interface, which extends the effective lifetime of charge carriers. The stability of NiO<jats:sub>x</jats:sub>;‐based PSCs is 48%, while PSCs with bilayer HTLs based on NiO<jats:sub>x</jats:sub>;/CoPc<jats:sub>nws</jats:sub> and NiO<jats:sub>x</jats:sub>;/CoPc<jats:sub>evap</jats:sub> exhibits higher stability of 71% and 90% over 600 hours. The results demonstrated that solar cells based on NiO<jats:sub>x</jats:sub>;/CoPc inhibit the perovskite degradation process and reduce charge recombination, thereby improving the performance and stability of the inverted PSCs.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202501794\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501794","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究表明,使用基于氧化镍(NiOx)和酞菁钴(CoPc)的双层膜代表了一种有前途的空穴传输层(HTLs),用于倒钙钛矿太阳能电池(PSCs)。NiOx;薄膜是用自旋镀膜法从溶胶-凝胶溶液中制备的。NiOx上的薄膜(CoPcevap)和纳米线(CoPcnws)表面由热溅射和物理梯度温度气相沉积制备。结果表明:含NiOx的psc;层的功率转换效率(PCE)仅为18.1%。在NiOx之间加入CoPcevap中间层;钙钛矿使PCE提高到19.1%。基于NiOx /CoPcnws的双层html实现了最高的PCE,达到20.7%。PSC阻抗谱分析表明,CoPcnws中间层降低了HTLs电阻,增加了钙钛矿/HTLs界面处的复合电阻,延长了载流子的有效寿命。基于NiOx的PSCs的稳定性为48%,而基于NiOx /CoPcnws和NiOx /CoPcevap的双层HTLs的PSCs在600小时内的稳定性更高,分别为71%和90%。结果表明,基于NiOx /CoPc的太阳能电池抑制了钙钛矿降解过程,减少了电荷重组,从而提高了倒置PSCs的性能和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nickel Oxide/Cobalt Phthalocyanine as a Hole Transport Bilayer for Efficient and Stable Inverted Perovskite Solar Cells

Nickel Oxide/Cobalt Phthalocyanine as a Hole Transport Bilayer for Efficient and Stable Inverted Perovskite Solar Cells
This study demonstrates that the use of bilayer films based on nickel oxide (NiOx;) and cobalt phthalocyanine (CoPc) represents a promising hole transport layer (HTLs) for inverted perovskite solar cells (PSCs). NiOx; films are fabricated using the spin‐coating method from a sol–gel solution. Films (CoPcevap) and nanowires (CoPcnws) on the NiOx; surface are produced by thermal sputtering and physical gradient‐temperature vapor deposition. It is demonstrated that PSCs with a NiOx; layer exhibit a power conversion efficiency (PCE) of only 18,1%. The incorporation of a CoPcevap intermediate layer between NiOx; and the perovskite increases the PCE to 19.1%. The highest PCE, reaching 20.7%, is achieved with a bilayer HTLs based on NiOx;/CoPcnws. Analysis of the PSC impedance spectra shows that the CoPcnws intermediate layer reduces the HTLs resistance and increases the recombination resistance at the perovskite/HTLs interface, which extends the effective lifetime of charge carriers. The stability of NiOx;‐based PSCs is 48%, while PSCs with bilayer HTLs based on NiOx;/CoPcnws and NiOx;/CoPcevap exhibits higher stability of 71% and 90% over 600 hours. The results demonstrated that solar cells based on NiOx;/CoPc inhibit the perovskite degradation process and reduce charge recombination, thereby improving the performance and stability of the inverted PSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信