Ning Jiang*, Yi Tang, Chenbin Xu, Bo Chen, Wei Xu, Jian Cheng, Yulin Zhu and Min Mao,
{"title":"柔性l-酪氨酸配体功能化的MIL-101金属有机骨架增强温室气体捕获","authors":"Ning Jiang*, Yi Tang, Chenbin Xu, Bo Chen, Wei Xu, Jian Cheng, Yulin Zhu and Min Mao, ","doi":"10.1021/acssuschemeng.5c03638","DOIUrl":null,"url":null,"abstract":"<p >To address environmental challenges such as global warming, we have synthesized a series of <span>l</span>-tyrosine-modified MIL-101 materials (<i>X</i>% Tyr-MIL-101, <i>X</i> = 0, 3, 5, 7, 10, 13) via an amino-acid functionalization strategy for greenhouse-gas capture. BET measurements suggest that <span>l</span>-tyrosine partially substitutes H<sub>2</sub>BDC in a monocoordinated fashion, dramatically enhancing specific surface area; notably, 7% Tyr-MIL-101 achieves a record 2891 m<sup>2</sup>/g, compared to 1269 m<sup>2</sup>/g for the unmodified analogue. Comprehensive characterization by FTIR, pore-size distribution, PXRD, SEM and TG-DSC confirms successful integration of <span>l</span>-tyrosine into the MIL-101 framework, concomitant with pore expansion, augmented pore volume, improved crystallinity and morphology and retained thermal stability. Static adsorption studies reveal that 7% Tyr-MIL-101 adheres to a Langmuir monolayer mechanism for CO<sub>2</sub>, CH<sub>4</sub>, CF<sub>4</sub>, NF<sub>3</sub>, N<sub>2</sub>, SF<sub>6</sub> and C<sub>2</sub>F<sub>6</sub>, and demonstrates excellent regenerability, delivering uptake increases of approximately 66%, 57%, 81%, 71%, 77%, 79% and 76%, respectively, relative to 0% Tyr-MIL-101. In dynamic breakthrough tests, 7% Tyr-MIL-101 exhibits separation factors of 30.9 (SF<sub>6</sub>/N<sub>2</sub>), 27.9 (C<sub>2</sub>F<sub>6</sub>/N<sub>2</sub>), 26.9 (CO<sub>2</sub>/N<sub>2</sub>), 7.5 (NF<sub>3</sub>/N<sub>2</sub>), 7.4 (CF<sub>4</sub>/N<sub>2</sub>) and 5.6 (CH<sub>4</sub>/N<sub>2</sub>), all exceeding their ideal single-component values, demonstrating exceptional selectivity. In summary, our novel monocoordinated, flexible-ligand modification yields 7% Tyr-MIL-101 with both high adsorption capacities and outstanding separation performance for multiple greenhouse gases, providing a robust experimental foundation for the development of next-generation greenhouse-gas capture and separation technologies.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 26","pages":"10153–10164"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIL-101 Metal–Organic Framework Functionalized with Flexible l-Tyrosine Ligands for Enhanced Greenhouse Gas Capture\",\"authors\":\"Ning Jiang*, Yi Tang, Chenbin Xu, Bo Chen, Wei Xu, Jian Cheng, Yulin Zhu and Min Mao, \",\"doi\":\"10.1021/acssuschemeng.5c03638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To address environmental challenges such as global warming, we have synthesized a series of <span>l</span>-tyrosine-modified MIL-101 materials (<i>X</i>% Tyr-MIL-101, <i>X</i> = 0, 3, 5, 7, 10, 13) via an amino-acid functionalization strategy for greenhouse-gas capture. BET measurements suggest that <span>l</span>-tyrosine partially substitutes H<sub>2</sub>BDC in a monocoordinated fashion, dramatically enhancing specific surface area; notably, 7% Tyr-MIL-101 achieves a record 2891 m<sup>2</sup>/g, compared to 1269 m<sup>2</sup>/g for the unmodified analogue. Comprehensive characterization by FTIR, pore-size distribution, PXRD, SEM and TG-DSC confirms successful integration of <span>l</span>-tyrosine into the MIL-101 framework, concomitant with pore expansion, augmented pore volume, improved crystallinity and morphology and retained thermal stability. Static adsorption studies reveal that 7% Tyr-MIL-101 adheres to a Langmuir monolayer mechanism for CO<sub>2</sub>, CH<sub>4</sub>, CF<sub>4</sub>, NF<sub>3</sub>, N<sub>2</sub>, SF<sub>6</sub> and C<sub>2</sub>F<sub>6</sub>, and demonstrates excellent regenerability, delivering uptake increases of approximately 66%, 57%, 81%, 71%, 77%, 79% and 76%, respectively, relative to 0% Tyr-MIL-101. In dynamic breakthrough tests, 7% Tyr-MIL-101 exhibits separation factors of 30.9 (SF<sub>6</sub>/N<sub>2</sub>), 27.9 (C<sub>2</sub>F<sub>6</sub>/N<sub>2</sub>), 26.9 (CO<sub>2</sub>/N<sub>2</sub>), 7.5 (NF<sub>3</sub>/N<sub>2</sub>), 7.4 (CF<sub>4</sub>/N<sub>2</sub>) and 5.6 (CH<sub>4</sub>/N<sub>2</sub>), all exceeding their ideal single-component values, demonstrating exceptional selectivity. In summary, our novel monocoordinated, flexible-ligand modification yields 7% Tyr-MIL-101 with both high adsorption capacities and outstanding separation performance for multiple greenhouse gases, providing a robust experimental foundation for the development of next-generation greenhouse-gas capture and separation technologies.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 26\",\"pages\":\"10153–10164\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c03638\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c03638","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为了应对全球变暖等环境挑战,我们通过氨基酸功能化策略合成了一系列l-酪氨酸修饰的MIL-101材料(X% tir -MIL-101, X = 0,3,5,7,10,13),用于温室气体捕获。BET测量表明,l-酪氨酸以单配位方式部分取代H2BDC,显著提高了比表面积;值得注意的是,7%的Tyr-MIL-101达到了创纪录的2891 m2/g,而未经改性的类似物为1269 m2/g。通过FTIR、孔径分布、PXRD、SEM和TG-DSC的综合表征,证实了l-酪氨酸成功整合到MIL-101框架中,同时伴随着孔隙扩张、孔隙体积增大、结晶度和形貌改善以及热稳定性的保持。静态吸附研究表明,7%的tir - mil -101对CO2、CH4、CF4、NF3、N2、SF6和C2F6的吸附符合Langmuir单层机制,并表现出良好的可再生性,相对于0%的tir - mil -101,吸收率分别提高了约66%、57%、81%、71%、77%、79%和76%。在动态突破试验中,7% tir - mil -101的分离系数分别为30.9 (SF6/N2)、27.9 (C2F6/N2)、26.9 (CO2/N2)、7.5 (NF3/N2)、7.4 (CF4/N2)和5.6 (CH4/N2),均超过了理想的单组分值,表现出优异的选择性。综上所述,我们的新型单配位、柔性配体修饰得到7%的tir - mil -101,对多种温室气体具有高吸附能力和出色的分离性能,为下一代温室气体捕获和分离技术的发展提供了坚实的实验基础。
MIL-101 Metal–Organic Framework Functionalized with Flexible l-Tyrosine Ligands for Enhanced Greenhouse Gas Capture
To address environmental challenges such as global warming, we have synthesized a series of l-tyrosine-modified MIL-101 materials (X% Tyr-MIL-101, X = 0, 3, 5, 7, 10, 13) via an amino-acid functionalization strategy for greenhouse-gas capture. BET measurements suggest that l-tyrosine partially substitutes H2BDC in a monocoordinated fashion, dramatically enhancing specific surface area; notably, 7% Tyr-MIL-101 achieves a record 2891 m2/g, compared to 1269 m2/g for the unmodified analogue. Comprehensive characterization by FTIR, pore-size distribution, PXRD, SEM and TG-DSC confirms successful integration of l-tyrosine into the MIL-101 framework, concomitant with pore expansion, augmented pore volume, improved crystallinity and morphology and retained thermal stability. Static adsorption studies reveal that 7% Tyr-MIL-101 adheres to a Langmuir monolayer mechanism for CO2, CH4, CF4, NF3, N2, SF6 and C2F6, and demonstrates excellent regenerability, delivering uptake increases of approximately 66%, 57%, 81%, 71%, 77%, 79% and 76%, respectively, relative to 0% Tyr-MIL-101. In dynamic breakthrough tests, 7% Tyr-MIL-101 exhibits separation factors of 30.9 (SF6/N2), 27.9 (C2F6/N2), 26.9 (CO2/N2), 7.5 (NF3/N2), 7.4 (CF4/N2) and 5.6 (CH4/N2), all exceeding their ideal single-component values, demonstrating exceptional selectivity. In summary, our novel monocoordinated, flexible-ligand modification yields 7% Tyr-MIL-101 with both high adsorption capacities and outstanding separation performance for multiple greenhouse gases, providing a robust experimental foundation for the development of next-generation greenhouse-gas capture and separation technologies.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.