{"title":"野生智慧与栽培:根际微生物组比较分析揭示了副黄连菌在促进黄连生长和抑制黄连疾病中的关键作用。","authors":"Xianhe Cao, Qingjun Yuan, Chengcheng Hu, Hanxing Zhang, Xianyun Sun, Binbin Yan, Xiaojing Ma, Long Zhang, Luqi Huang, Shaojie Li, Zhenying Zhang","doi":"10.1186/s40168-025-02136-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The sustained monoculture and irregular planting practices rendered the cultivated Coptis chinensis more prone to various diseases compared to its wild counterparts. Rewilding the rhizomicrobiome of cultivated plants has emerged as a promising strategy to promote plant growth, but ancestral microbiota suitable for C. chinensis remain largely uncharted.</p><p><strong>Results: </strong>The amplicon data analyses revealed that habitat transition strongly influenced the rhizosphere microbial communities. The rhizomicrobiomes of wild C. chinensis encompassed a more diverse array of ecological groups and exhibited a greater functional diversity compared to their cultivated counterparts. A higher proportion of beneficial fungi was observed in the rhizosphere of wild C. chinensis, while the cultivated plants had a higher population of pathogenic fungi. Furthermore, a well-documented plant-growth-promoting rhizobacterium genus, Paraburkholderia, was found to play an essential role in the resistance of the wild C. chinensis to potential disease caused by Ilyonectria. Two strains of Paraburkholderia (Paraburkholderia nemoris and Paraburkholderia phytofirmans) were isolated, and in vitro experiments confirmed that these isolates possess various growth-promoting properties and antagonistic activities against known pathogens for C. chinensis root rot. Both of the Paraburkholderia isolates could markedly promote the plant immune response and enhance the overall health of the cultivated C. chinensis.</p><p><strong>Conclusions: </strong>By a comprehensive comparison of the rhizosphere microbiome between wild and cultivated C. chinensis, the promising bacterial genus Paraburkholderia was identified as a beneficial microbe significantly promoting the growth of C. chinensis, providing pivotal insights for future endeavors aimed at engineering the rhizosphere microbiome of C. chinensis, as well as other medicinal herbs. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"150"},"PeriodicalIF":12.7000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181905/pdf/","citationCount":"0","resultStr":"{\"title\":\"Wild wisdom meets cultivation: comparative rhizomicrobiome analysis unveils the key role of Paraburkholderia in growth promotion and disease suppression in Coptis chinensis.\",\"authors\":\"Xianhe Cao, Qingjun Yuan, Chengcheng Hu, Hanxing Zhang, Xianyun Sun, Binbin Yan, Xiaojing Ma, Long Zhang, Luqi Huang, Shaojie Li, Zhenying Zhang\",\"doi\":\"10.1186/s40168-025-02136-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The sustained monoculture and irregular planting practices rendered the cultivated Coptis chinensis more prone to various diseases compared to its wild counterparts. Rewilding the rhizomicrobiome of cultivated plants has emerged as a promising strategy to promote plant growth, but ancestral microbiota suitable for C. chinensis remain largely uncharted.</p><p><strong>Results: </strong>The amplicon data analyses revealed that habitat transition strongly influenced the rhizosphere microbial communities. The rhizomicrobiomes of wild C. chinensis encompassed a more diverse array of ecological groups and exhibited a greater functional diversity compared to their cultivated counterparts. A higher proportion of beneficial fungi was observed in the rhizosphere of wild C. chinensis, while the cultivated plants had a higher population of pathogenic fungi. Furthermore, a well-documented plant-growth-promoting rhizobacterium genus, Paraburkholderia, was found to play an essential role in the resistance of the wild C. chinensis to potential disease caused by Ilyonectria. Two strains of Paraburkholderia (Paraburkholderia nemoris and Paraburkholderia phytofirmans) were isolated, and in vitro experiments confirmed that these isolates possess various growth-promoting properties and antagonistic activities against known pathogens for C. chinensis root rot. Both of the Paraburkholderia isolates could markedly promote the plant immune response and enhance the overall health of the cultivated C. chinensis.</p><p><strong>Conclusions: </strong>By a comprehensive comparison of the rhizosphere microbiome between wild and cultivated C. chinensis, the promising bacterial genus Paraburkholderia was identified as a beneficial microbe significantly promoting the growth of C. chinensis, providing pivotal insights for future endeavors aimed at engineering the rhizosphere microbiome of C. chinensis, as well as other medicinal herbs. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"13 1\",\"pages\":\"150\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181905/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-025-02136-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02136-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Wild wisdom meets cultivation: comparative rhizomicrobiome analysis unveils the key role of Paraburkholderia in growth promotion and disease suppression in Coptis chinensis.
Background: The sustained monoculture and irregular planting practices rendered the cultivated Coptis chinensis more prone to various diseases compared to its wild counterparts. Rewilding the rhizomicrobiome of cultivated plants has emerged as a promising strategy to promote plant growth, but ancestral microbiota suitable for C. chinensis remain largely uncharted.
Results: The amplicon data analyses revealed that habitat transition strongly influenced the rhizosphere microbial communities. The rhizomicrobiomes of wild C. chinensis encompassed a more diverse array of ecological groups and exhibited a greater functional diversity compared to their cultivated counterparts. A higher proportion of beneficial fungi was observed in the rhizosphere of wild C. chinensis, while the cultivated plants had a higher population of pathogenic fungi. Furthermore, a well-documented plant-growth-promoting rhizobacterium genus, Paraburkholderia, was found to play an essential role in the resistance of the wild C. chinensis to potential disease caused by Ilyonectria. Two strains of Paraburkholderia (Paraburkholderia nemoris and Paraburkholderia phytofirmans) were isolated, and in vitro experiments confirmed that these isolates possess various growth-promoting properties and antagonistic activities against known pathogens for C. chinensis root rot. Both of the Paraburkholderia isolates could markedly promote the plant immune response and enhance the overall health of the cultivated C. chinensis.
Conclusions: By a comprehensive comparison of the rhizosphere microbiome between wild and cultivated C. chinensis, the promising bacterial genus Paraburkholderia was identified as a beneficial microbe significantly promoting the growth of C. chinensis, providing pivotal insights for future endeavors aimed at engineering the rhizosphere microbiome of C. chinensis, as well as other medicinal herbs. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.