{"title":"基于经验傅里叶分解的分数阶离散正弦变换检测乳腺癌。","authors":"Mohamed Moustafa Azmy","doi":"10.1177/09592989251351608","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is the most common cause of death among women worldwide. Early detection of breast cancer is important; for saving patients' lives. Ultrasound and mammography are the most common noninvasive methods for detecting breast cancer. Computer techniques are used to help physicians diagnose cancer. In most of the previous studies, the classification parameter rates were not high enough to achieve the correct diagnosis. In this study, new approaches were applied to detect breast cancer images from three databases. The programming software used to extract features from the images was MATLAB R2022a. Novel approaches were obtained using new fractional transforms. These fractional transforms were deduced from the fraction Fourier transform and novel discrete transforms. The novel discrete transforms were derived from discrete sine and cosine transforms. The steps of the approaches were described below. First, fractional transforms were applied to the breast images. Then, the empirical Fourier decomposition (EFD) was obtained. The mean, variance, kurtosis, and skewness were subsequently calculated. Finally, RNN-BILSTM (recurrent neural network-bidirectional-long short-term memory) was used as a classification phase. The proposed approaches were compared to obtain the highest accuracy rate during the classification phase based on different fractional transforms. The highest accuracy rate was obtained when the fractional discrete sinc transform of approach 4 was applied. The area under the receiver operating characteristic curve (AUC) was 1. The accuracy, sensitivity, specificity, precision, G-mean, and F-measure rates were 100%. If traditional machine learning methods, such as support vector machines (SVMs) and artificial neural networks (ANNs), were used, the classification parameter rates would be low. Therefore, the fourth approach used RNN-BILSTM to extract the features of breast images perfectly. This approach can be programed on a computer to help physicians correctly classify breast images.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251351608"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of breast cancer using fractional discrete sinc transform based on empirical Fourier decomposition.\",\"authors\":\"Mohamed Moustafa Azmy\",\"doi\":\"10.1177/09592989251351608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is the most common cause of death among women worldwide. Early detection of breast cancer is important; for saving patients' lives. Ultrasound and mammography are the most common noninvasive methods for detecting breast cancer. Computer techniques are used to help physicians diagnose cancer. In most of the previous studies, the classification parameter rates were not high enough to achieve the correct diagnosis. In this study, new approaches were applied to detect breast cancer images from three databases. The programming software used to extract features from the images was MATLAB R2022a. Novel approaches were obtained using new fractional transforms. These fractional transforms were deduced from the fraction Fourier transform and novel discrete transforms. The novel discrete transforms were derived from discrete sine and cosine transforms. The steps of the approaches were described below. First, fractional transforms were applied to the breast images. Then, the empirical Fourier decomposition (EFD) was obtained. The mean, variance, kurtosis, and skewness were subsequently calculated. Finally, RNN-BILSTM (recurrent neural network-bidirectional-long short-term memory) was used as a classification phase. The proposed approaches were compared to obtain the highest accuracy rate during the classification phase based on different fractional transforms. The highest accuracy rate was obtained when the fractional discrete sinc transform of approach 4 was applied. The area under the receiver operating characteristic curve (AUC) was 1. The accuracy, sensitivity, specificity, precision, G-mean, and F-measure rates were 100%. If traditional machine learning methods, such as support vector machines (SVMs) and artificial neural networks (ANNs), were used, the classification parameter rates would be low. Therefore, the fourth approach used RNN-BILSTM to extract the features of breast images perfectly. This approach can be programed on a computer to help physicians correctly classify breast images.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"9592989251351608\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09592989251351608\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989251351608","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Detection of breast cancer using fractional discrete sinc transform based on empirical Fourier decomposition.
Breast cancer is the most common cause of death among women worldwide. Early detection of breast cancer is important; for saving patients' lives. Ultrasound and mammography are the most common noninvasive methods for detecting breast cancer. Computer techniques are used to help physicians diagnose cancer. In most of the previous studies, the classification parameter rates were not high enough to achieve the correct diagnosis. In this study, new approaches were applied to detect breast cancer images from three databases. The programming software used to extract features from the images was MATLAB R2022a. Novel approaches were obtained using new fractional transforms. These fractional transforms were deduced from the fraction Fourier transform and novel discrete transforms. The novel discrete transforms were derived from discrete sine and cosine transforms. The steps of the approaches were described below. First, fractional transforms were applied to the breast images. Then, the empirical Fourier decomposition (EFD) was obtained. The mean, variance, kurtosis, and skewness were subsequently calculated. Finally, RNN-BILSTM (recurrent neural network-bidirectional-long short-term memory) was used as a classification phase. The proposed approaches were compared to obtain the highest accuracy rate during the classification phase based on different fractional transforms. The highest accuracy rate was obtained when the fractional discrete sinc transform of approach 4 was applied. The area under the receiver operating characteristic curve (AUC) was 1. The accuracy, sensitivity, specificity, precision, G-mean, and F-measure rates were 100%. If traditional machine learning methods, such as support vector machines (SVMs) and artificial neural networks (ANNs), were used, the classification parameter rates would be low. Therefore, the fourth approach used RNN-BILSTM to extract the features of breast images perfectly. This approach can be programed on a computer to help physicians correctly classify breast images.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.