{"title":"衰变泡沫气泡的尺寸分布。","authors":"Ildoo Kim","doi":"10.1140/epje/s10189-025-00498-z","DOIUrl":null,"url":null,"abstract":"<p><p>The most studies on the stability of foam bubbles investigated the mechanical stability of thin films between bubbles due to the drainage by gravity. In the current work, we take an alternative approach by assuming the rupture of bubbles as a series of random events and by investigating the time evolution of the size distribution of foam bubbles over a long time up to several hours. For this purpose, we first prepared layers of bubbles on Petri dishes by shaking soap solutions of a few different concentrations, and then we monitored the Petri dishes by using a time-lapse video imaging technique. We analyzed the captured images by custom software to count the bubble size distribution with respect to the initial concentration and elapsed time. From the statistics on our data, we find that the total bubble volume decreases exponentially in time, and the exponent, i.e., the mean lifetime, is a function of the bubble size. The mean lifetimes of larger bubbles are observed to be shorter than those of smaller bubbles, by approximately a factor of 2.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 6-7","pages":"33"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size distribution of decaying foam bubbles.\",\"authors\":\"Ildoo Kim\",\"doi\":\"10.1140/epje/s10189-025-00498-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The most studies on the stability of foam bubbles investigated the mechanical stability of thin films between bubbles due to the drainage by gravity. In the current work, we take an alternative approach by assuming the rupture of bubbles as a series of random events and by investigating the time evolution of the size distribution of foam bubbles over a long time up to several hours. For this purpose, we first prepared layers of bubbles on Petri dishes by shaking soap solutions of a few different concentrations, and then we monitored the Petri dishes by using a time-lapse video imaging technique. We analyzed the captured images by custom software to count the bubble size distribution with respect to the initial concentration and elapsed time. From the statistics on our data, we find that the total bubble volume decreases exponentially in time, and the exponent, i.e., the mean lifetime, is a function of the bubble size. The mean lifetimes of larger bubbles are observed to be shorter than those of smaller bubbles, by approximately a factor of 2.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 6-7\",\"pages\":\"33\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1140/epje/s10189-025-00498-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1140/epje/s10189-025-00498-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The most studies on the stability of foam bubbles investigated the mechanical stability of thin films between bubbles due to the drainage by gravity. In the current work, we take an alternative approach by assuming the rupture of bubbles as a series of random events and by investigating the time evolution of the size distribution of foam bubbles over a long time up to several hours. For this purpose, we first prepared layers of bubbles on Petri dishes by shaking soap solutions of a few different concentrations, and then we monitored the Petri dishes by using a time-lapse video imaging technique. We analyzed the captured images by custom software to count the bubble size distribution with respect to the initial concentration and elapsed time. From the statistics on our data, we find that the total bubble volume decreases exponentially in time, and the exponent, i.e., the mean lifetime, is a function of the bubble size. The mean lifetimes of larger bubbles are observed to be shorter than those of smaller bubbles, by approximately a factor of 2.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.