Vladimir V Baranov, Anton A Galochkin, Vera A Alferova, Anton P Tyurin, Anna L Alekseenko, Sergei V Popkov, Sabrie M Shakir-Alieva, Yuri A Strelenko, Natalya G Kolotyrkina, Angelina N Kravchenko
{"title":"新型半乙烯基糖色素的合成及抗真菌性能研究。","authors":"Vladimir V Baranov, Anton A Galochkin, Vera A Alferova, Anton P Tyurin, Anna L Alekseenko, Sergei V Popkov, Sabrie M Shakir-Alieva, Yuri A Strelenko, Natalya G Kolotyrkina, Angelina N Kravchenko","doi":"10.1007/s11030-025-11243-1","DOIUrl":null,"url":null,"abstract":"<p><p>The universal two-stage synthesis of 1-alkyl-4-methyl- and 1,3,4-trialkylsubstituted semiselenoglycolurils was realized on the basis of a range of semithioglycolurils, which were S-methylated to isothiouronium salts, followed by the interaction of the salts with NaHSe generated in situ from Se and NaBH<sub>4</sub>. The resulting semiselenoglycolurils were tested as antimicrobials and exhibited selective inhibition of filamentous fungi. A broad comparison with previously reported analogs revealed their fungistatic mode of action and highlighted the significant influence of steric hindrance of the selenium atom on antifungal activity. These findings suggest that semiselenoglycolurils may possess a novel antifungal mechanism, warranting further detailed investigation of their molecular targets. In addition, 1,3,4-trialkylsemiselenoglycolurils effectively inhibit the growth of phytopathogenic fungi.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and antifungal properties of the new semiselenoglycolurils.\",\"authors\":\"Vladimir V Baranov, Anton A Galochkin, Vera A Alferova, Anton P Tyurin, Anna L Alekseenko, Sergei V Popkov, Sabrie M Shakir-Alieva, Yuri A Strelenko, Natalya G Kolotyrkina, Angelina N Kravchenko\",\"doi\":\"10.1007/s11030-025-11243-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The universal two-stage synthesis of 1-alkyl-4-methyl- and 1,3,4-trialkylsubstituted semiselenoglycolurils was realized on the basis of a range of semithioglycolurils, which were S-methylated to isothiouronium salts, followed by the interaction of the salts with NaHSe generated in situ from Se and NaBH<sub>4</sub>. The resulting semiselenoglycolurils were tested as antimicrobials and exhibited selective inhibition of filamentous fungi. A broad comparison with previously reported analogs revealed their fungistatic mode of action and highlighted the significant influence of steric hindrance of the selenium atom on antifungal activity. These findings suggest that semiselenoglycolurils may possess a novel antifungal mechanism, warranting further detailed investigation of their molecular targets. In addition, 1,3,4-trialkylsemiselenoglycolurils effectively inhibit the growth of phytopathogenic fungi.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11243-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11243-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synthesis and antifungal properties of the new semiselenoglycolurils.
The universal two-stage synthesis of 1-alkyl-4-methyl- and 1,3,4-trialkylsubstituted semiselenoglycolurils was realized on the basis of a range of semithioglycolurils, which were S-methylated to isothiouronium salts, followed by the interaction of the salts with NaHSe generated in situ from Se and NaBH4. The resulting semiselenoglycolurils were tested as antimicrobials and exhibited selective inhibition of filamentous fungi. A broad comparison with previously reported analogs revealed their fungistatic mode of action and highlighted the significant influence of steric hindrance of the selenium atom on antifungal activity. These findings suggest that semiselenoglycolurils may possess a novel antifungal mechanism, warranting further detailed investigation of their molecular targets. In addition, 1,3,4-trialkylsemiselenoglycolurils effectively inhibit the growth of phytopathogenic fungi.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;