Youzhi An, Guoping Wen, Mengsha Fan, Peng Zhao, Jin Sun, Mengyi He, Huili Bao, Yun Li, Na Li, Fengtai Zhang, Yanjun Zhang
{"title":"迈向城市可持续发展:解读城市空间结构与碳排放的时空关系。","authors":"Youzhi An, Guoping Wen, Mengsha Fan, Peng Zhao, Jin Sun, Mengyi He, Huili Bao, Yun Li, Na Li, Fengtai Zhang, Yanjun Zhang","doi":"10.1186/s13021-025-00304-5","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the spatiotemporal relationship between urban spatial structure and carbon emissions is essential for achieving sustainable urban development. However, the underlying mechanisms driving their complex interactions remain insufficiently explored. This study employs machine learning and multiscale geographically weighted regression (MGWR) to investigate the spatial and temporal dynamics of urban spatial structure and their impact on carbon emissions in the Yangtze River Economic Belt (YREB). The results reveal significant spatial heterogeneity, with carbon emissions highly concentrated in Shanghai, Jiangsu, and Zhejiang province, which are situated in the lower of Yangtze River Economic Belt, while other regions exhibit a general upward trend, characterized by urban expansion towards peripheral areas. Driving forces analysis highlights the varying effects of urban form attributes, including breadth, complexity and compactness, on carbon emissions. These findings offer theoretical insights into optimizing urban spatial structures and provide scientific support for policymakers to implement targeted carbon reduction strategies and promote sustainable urban transformation.</p>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":"17"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181831/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards sustainable urban development: decoding the spatiotemporal relationship between urban spatial structure and carbon emissions.\",\"authors\":\"Youzhi An, Guoping Wen, Mengsha Fan, Peng Zhao, Jin Sun, Mengyi He, Huili Bao, Yun Li, Na Li, Fengtai Zhang, Yanjun Zhang\",\"doi\":\"10.1186/s13021-025-00304-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the spatiotemporal relationship between urban spatial structure and carbon emissions is essential for achieving sustainable urban development. However, the underlying mechanisms driving their complex interactions remain insufficiently explored. This study employs machine learning and multiscale geographically weighted regression (MGWR) to investigate the spatial and temporal dynamics of urban spatial structure and their impact on carbon emissions in the Yangtze River Economic Belt (YREB). The results reveal significant spatial heterogeneity, with carbon emissions highly concentrated in Shanghai, Jiangsu, and Zhejiang province, which are situated in the lower of Yangtze River Economic Belt, while other regions exhibit a general upward trend, characterized by urban expansion towards peripheral areas. Driving forces analysis highlights the varying effects of urban form attributes, including breadth, complexity and compactness, on carbon emissions. These findings offer theoretical insights into optimizing urban spatial structures and provide scientific support for policymakers to implement targeted carbon reduction strategies and promote sustainable urban transformation.</p>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"20 1\",\"pages\":\"17\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181831/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1186/s13021-025-00304-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s13021-025-00304-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Towards sustainable urban development: decoding the spatiotemporal relationship between urban spatial structure and carbon emissions.
Understanding the spatiotemporal relationship between urban spatial structure and carbon emissions is essential for achieving sustainable urban development. However, the underlying mechanisms driving their complex interactions remain insufficiently explored. This study employs machine learning and multiscale geographically weighted regression (MGWR) to investigate the spatial and temporal dynamics of urban spatial structure and their impact on carbon emissions in the Yangtze River Economic Belt (YREB). The results reveal significant spatial heterogeneity, with carbon emissions highly concentrated in Shanghai, Jiangsu, and Zhejiang province, which are situated in the lower of Yangtze River Economic Belt, while other regions exhibit a general upward trend, characterized by urban expansion towards peripheral areas. Driving forces analysis highlights the varying effects of urban form attributes, including breadth, complexity and compactness, on carbon emissions. These findings offer theoretical insights into optimizing urban spatial structures and provide scientific support for policymakers to implement targeted carbon reduction strategies and promote sustainable urban transformation.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.