多回波fMRI数据中生理伪影的校正——对可能的RETROICOR实现的评估

IF 3.5 2区 医学 Q1 NEUROIMAGING
Anežka Kovářová, Michal Mikl
{"title":"多回波fMRI数据中生理伪影的校正——对可能的RETROICOR实现的评估","authors":"Anežka Kovářová,&nbsp;Michal Mikl","doi":"10.1002/hbm.70264","DOIUrl":null,"url":null,"abstract":"<p>The study evaluates the efficacy of RETROICOR (Retrospective Image Correction) in mitigating physiological artifacts within multi-echo (ME) fMRI data. Two RETROICOR implementations were compared: applying corrections to individual echoes (RTC_ind) versus composite multi-echo data (RTC_comp). Data from 50 healthy participants were collected using diverse acquisition parameters, including multiband acceleration factors and varying flip angles, on a Siemens Prisma 3T scanner. Key metrics such as temporal signal-to-noise ratio (tSNR), signal fluctuation sensitivity (SFS), and variance of residuals demonstrated improved data quality in both RETROICOR models, particularly in moderately accelerated runs (multiband factors 4 and 6) with lower flip angles (45°). Differences between RTC_ind and RTC_comp were minimal, suggesting both methods are viable for practical applications. While the highest acceleration (multiband factor 8) degraded data quality, RETROICOR's compatibility with faster acquisition sequences was confirmed. These findings underscore the importance of optimizing acquisition parameters and noise correction techniques for reliable fMRI investigations.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70264","citationCount":"0","resultStr":"{\"title\":\"Correction of Physiological Artifacts in Multi-Echo fMRI Data—Evaluation of Possible RETROICOR Implementations\",\"authors\":\"Anežka Kovářová,&nbsp;Michal Mikl\",\"doi\":\"10.1002/hbm.70264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study evaluates the efficacy of RETROICOR (Retrospective Image Correction) in mitigating physiological artifacts within multi-echo (ME) fMRI data. Two RETROICOR implementations were compared: applying corrections to individual echoes (RTC_ind) versus composite multi-echo data (RTC_comp). Data from 50 healthy participants were collected using diverse acquisition parameters, including multiband acceleration factors and varying flip angles, on a Siemens Prisma 3T scanner. Key metrics such as temporal signal-to-noise ratio (tSNR), signal fluctuation sensitivity (SFS), and variance of residuals demonstrated improved data quality in both RETROICOR models, particularly in moderately accelerated runs (multiband factors 4 and 6) with lower flip angles (45°). Differences between RTC_ind and RTC_comp were minimal, suggesting both methods are viable for practical applications. While the highest acceleration (multiband factor 8) degraded data quality, RETROICOR's compatibility with faster acquisition sequences was confirmed. These findings underscore the importance of optimizing acquisition parameters and noise correction techniques for reliable fMRI investigations.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70264\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70264\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70264","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

该研究评估了RETROICOR(回顾性图像校正)在减轻多回声(ME)功能磁共振成像数据中的生理伪影方面的功效。比较了两种RETROICOR实现:对单个回波(RTC_ind)和复合多回波数据(RTC_comp)应用校正。在西门子Prisma 3T扫描仪上,使用不同的采集参数(包括多波段加速因子和不同的翻转角度)收集了50名健康参与者的数据。时间信噪比(tSNR)、信号波动灵敏度(SFS)和残差方差等关键指标表明,RETROICOR模型的数据质量有所提高,特别是在较小翻转角度(45°)的适度加速运行(多频带因子4和6)时。RTC_ind和RTC_comp之间的差异很小,表明这两种方法在实际应用中都是可行的。虽然最高加速(多频带因子8)会降低数据质量,但证实了RETROICOR与更快采集序列的兼容性。这些发现强调了优化采集参数和噪声校正技术对可靠的功能磁共振成像调查的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Correction of Physiological Artifacts in Multi-Echo fMRI Data—Evaluation of Possible RETROICOR Implementations

Correction of Physiological Artifacts in Multi-Echo fMRI Data—Evaluation of Possible RETROICOR Implementations

The study evaluates the efficacy of RETROICOR (Retrospective Image Correction) in mitigating physiological artifacts within multi-echo (ME) fMRI data. Two RETROICOR implementations were compared: applying corrections to individual echoes (RTC_ind) versus composite multi-echo data (RTC_comp). Data from 50 healthy participants were collected using diverse acquisition parameters, including multiband acceleration factors and varying flip angles, on a Siemens Prisma 3T scanner. Key metrics such as temporal signal-to-noise ratio (tSNR), signal fluctuation sensitivity (SFS), and variance of residuals demonstrated improved data quality in both RETROICOR models, particularly in moderately accelerated runs (multiband factors 4 and 6) with lower flip angles (45°). Differences between RTC_ind and RTC_comp were minimal, suggesting both methods are viable for practical applications. While the highest acceleration (multiband factor 8) degraded data quality, RETROICOR's compatibility with faster acquisition sequences was confirmed. These findings underscore the importance of optimizing acquisition parameters and noise correction techniques for reliable fMRI investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信