{"title":"多回波fMRI数据中生理伪影的校正——对可能的RETROICOR实现的评估","authors":"Anežka Kovářová, Michal Mikl","doi":"10.1002/hbm.70264","DOIUrl":null,"url":null,"abstract":"<p>The study evaluates the efficacy of RETROICOR (Retrospective Image Correction) in mitigating physiological artifacts within multi-echo (ME) fMRI data. Two RETROICOR implementations were compared: applying corrections to individual echoes (RTC_ind) versus composite multi-echo data (RTC_comp). Data from 50 healthy participants were collected using diverse acquisition parameters, including multiband acceleration factors and varying flip angles, on a Siemens Prisma 3T scanner. Key metrics such as temporal signal-to-noise ratio (tSNR), signal fluctuation sensitivity (SFS), and variance of residuals demonstrated improved data quality in both RETROICOR models, particularly in moderately accelerated runs (multiband factors 4 and 6) with lower flip angles (45°). Differences between RTC_ind and RTC_comp were minimal, suggesting both methods are viable for practical applications. While the highest acceleration (multiband factor 8) degraded data quality, RETROICOR's compatibility with faster acquisition sequences was confirmed. These findings underscore the importance of optimizing acquisition parameters and noise correction techniques for reliable fMRI investigations.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70264","citationCount":"0","resultStr":"{\"title\":\"Correction of Physiological Artifacts in Multi-Echo fMRI Data—Evaluation of Possible RETROICOR Implementations\",\"authors\":\"Anežka Kovářová, Michal Mikl\",\"doi\":\"10.1002/hbm.70264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study evaluates the efficacy of RETROICOR (Retrospective Image Correction) in mitigating physiological artifacts within multi-echo (ME) fMRI data. Two RETROICOR implementations were compared: applying corrections to individual echoes (RTC_ind) versus composite multi-echo data (RTC_comp). Data from 50 healthy participants were collected using diverse acquisition parameters, including multiband acceleration factors and varying flip angles, on a Siemens Prisma 3T scanner. Key metrics such as temporal signal-to-noise ratio (tSNR), signal fluctuation sensitivity (SFS), and variance of residuals demonstrated improved data quality in both RETROICOR models, particularly in moderately accelerated runs (multiband factors 4 and 6) with lower flip angles (45°). Differences between RTC_ind and RTC_comp were minimal, suggesting both methods are viable for practical applications. While the highest acceleration (multiband factor 8) degraded data quality, RETROICOR's compatibility with faster acquisition sequences was confirmed. These findings underscore the importance of optimizing acquisition parameters and noise correction techniques for reliable fMRI investigations.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70264\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70264\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70264","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Correction of Physiological Artifacts in Multi-Echo fMRI Data—Evaluation of Possible RETROICOR Implementations
The study evaluates the efficacy of RETROICOR (Retrospective Image Correction) in mitigating physiological artifacts within multi-echo (ME) fMRI data. Two RETROICOR implementations were compared: applying corrections to individual echoes (RTC_ind) versus composite multi-echo data (RTC_comp). Data from 50 healthy participants were collected using diverse acquisition parameters, including multiband acceleration factors and varying flip angles, on a Siemens Prisma 3T scanner. Key metrics such as temporal signal-to-noise ratio (tSNR), signal fluctuation sensitivity (SFS), and variance of residuals demonstrated improved data quality in both RETROICOR models, particularly in moderately accelerated runs (multiband factors 4 and 6) with lower flip angles (45°). Differences between RTC_ind and RTC_comp were minimal, suggesting both methods are viable for practical applications. While the highest acceleration (multiband factor 8) degraded data quality, RETROICOR's compatibility with faster acquisition sequences was confirmed. These findings underscore the importance of optimizing acquisition parameters and noise correction techniques for reliable fMRI investigations.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.