Frank Tietz, Philipp Odenwald, Doris Sebold, Mareen Schaller, Thorben Böger, Jan Köttgen, Qianli Ma, Sylvio Indris, Wolfgang G. Zeier, Oana Cojocaru-Mirédin, Dina Fattakhova-Rohlfing
{"title":"封面专题:NaSICON玻璃陶瓷微结构特性对离子和热输运的影响(电池& Supercaps 6/2025)","authors":"Frank Tietz, Philipp Odenwald, Doris Sebold, Mareen Schaller, Thorben Böger, Jan Köttgen, Qianli Ma, Sylvio Indris, Wolfgang G. Zeier, Oana Cojocaru-Mirédin, Dina Fattakhova-Rohlfing","doi":"10.1002/batt.202580602","DOIUrl":null,"url":null,"abstract":"<p><b>The Cover Feature</b> shows, with tongue in cheek, the situation in the complex structure of NaSICON glass-ceramics. Inspired by the amusing drawing in van Gool's proceedings of the legendary first Belgirate conference on fast ion transport in solids in 1972, the picture shows how although the Na ions can easily migrate from one NaSICON crystal to the next, they cannot get any further at the boundaries to the glass and can only move with difficulty in the glass phase. Only along the tubular cavities can Na ions and protons easily slip through the glass areas and thus keep the overall conductivity high. More information can be found in the Research Article by F. Tietz and co-workers (DOI: 10.1002/batt.202500093).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580602","citationCount":"0","resultStr":"{\"title\":\"Cover Feature: Impact of Microstructural Properties on Ionic and Heat Transport in NaSICON Glass Ceramics (Batteries & Supercaps 6/2025)\",\"authors\":\"Frank Tietz, Philipp Odenwald, Doris Sebold, Mareen Schaller, Thorben Böger, Jan Köttgen, Qianli Ma, Sylvio Indris, Wolfgang G. Zeier, Oana Cojocaru-Mirédin, Dina Fattakhova-Rohlfing\",\"doi\":\"10.1002/batt.202580602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>The Cover Feature</b> shows, with tongue in cheek, the situation in the complex structure of NaSICON glass-ceramics. Inspired by the amusing drawing in van Gool's proceedings of the legendary first Belgirate conference on fast ion transport in solids in 1972, the picture shows how although the Na ions can easily migrate from one NaSICON crystal to the next, they cannot get any further at the boundaries to the glass and can only move with difficulty in the glass phase. Only along the tubular cavities can Na ions and protons easily slip through the glass areas and thus keep the overall conductivity high. More information can be found in the Research Article by F. Tietz and co-workers (DOI: 10.1002/batt.202500093).\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 6\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580602\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202580602\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202580602","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Cover Feature: Impact of Microstructural Properties on Ionic and Heat Transport in NaSICON Glass Ceramics (Batteries & Supercaps 6/2025)
The Cover Feature shows, with tongue in cheek, the situation in the complex structure of NaSICON glass-ceramics. Inspired by the amusing drawing in van Gool's proceedings of the legendary first Belgirate conference on fast ion transport in solids in 1972, the picture shows how although the Na ions can easily migrate from one NaSICON crystal to the next, they cannot get any further at the boundaries to the glass and can only move with difficulty in the glass phase. Only along the tubular cavities can Na ions and protons easily slip through the glass areas and thus keep the overall conductivity high. More information can be found in the Research Article by F. Tietz and co-workers (DOI: 10.1002/batt.202500093).
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.