肥胖生物标志物:探索因素,分支,机器学习和人工智能在健康研究中的揭示见解

IF 10.7 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
MedComm Pub Date : 2025-06-22 DOI:10.1002/mco2.70169
Ankita Awari, Deepika Kaushik, Ashwani Kumar, Emel Oz, Kenan Çadırcı, Charles Brennan, Charalampos Proestos, Mukul Kumar, Fatih Oz
{"title":"肥胖生物标志物:探索因素,分支,机器学习和人工智能在健康研究中的揭示见解","authors":"Ankita Awari,&nbsp;Deepika Kaushik,&nbsp;Ashwani Kumar,&nbsp;Emel Oz,&nbsp;Kenan Çadırcı,&nbsp;Charles Brennan,&nbsp;Charalampos Proestos,&nbsp;Mukul Kumar,&nbsp;Fatih Oz","doi":"10.1002/mco2.70169","DOIUrl":null,"url":null,"abstract":"<p>Biomarkers play a pivotal role in the detection and management of diseases, including obesity—a growing global health crisis with complex biological underpinnings. The multifaceted nature of obesity, coupled with socioeconomic disparities, underscores the urgent need for precise diagnostic and therapeutic approaches. Recent advances in biosciences, including next-generation sequencing, multi-omics analysis, high-resolution imaging, and smart sensors, have revolutionized data generation. However, effectively leveraging these data-rich technologies to identify and validate obesity-related biomarkers remains a significant challenge. This review bridges this gap by highlighting the potential of machine learning (ML) in obesity research. Specifically, it explores how ML techniques can process complex data sets to enhance the discovery and validation of biomarkers. Additionally, it examines the integration of advanced technologies for understanding obesity mechanisms, assessing risk factors, and optimizing treatment strategies. A detailed discussion is provided on the applications of ML in multi-omics analysis and high-throughput data integration for actionable insights. The academic value of this review lies in synthesizing the latest technological and analytical innovations in obesity research. By providing a comprehensive overview, it aims to guide future studies and foster the development of targeted, data-driven strategies in obesity management.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 7","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70169","citationCount":"0","resultStr":"{\"title\":\"Obesity Biomarkers: Exploring Factors, Ramification, Machine Learning, and AI-Unveiling Insights in Health Research\",\"authors\":\"Ankita Awari,&nbsp;Deepika Kaushik,&nbsp;Ashwani Kumar,&nbsp;Emel Oz,&nbsp;Kenan Çadırcı,&nbsp;Charles Brennan,&nbsp;Charalampos Proestos,&nbsp;Mukul Kumar,&nbsp;Fatih Oz\",\"doi\":\"10.1002/mco2.70169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biomarkers play a pivotal role in the detection and management of diseases, including obesity—a growing global health crisis with complex biological underpinnings. The multifaceted nature of obesity, coupled with socioeconomic disparities, underscores the urgent need for precise diagnostic and therapeutic approaches. Recent advances in biosciences, including next-generation sequencing, multi-omics analysis, high-resolution imaging, and smart sensors, have revolutionized data generation. However, effectively leveraging these data-rich technologies to identify and validate obesity-related biomarkers remains a significant challenge. This review bridges this gap by highlighting the potential of machine learning (ML) in obesity research. Specifically, it explores how ML techniques can process complex data sets to enhance the discovery and validation of biomarkers. Additionally, it examines the integration of advanced technologies for understanding obesity mechanisms, assessing risk factors, and optimizing treatment strategies. A detailed discussion is provided on the applications of ML in multi-omics analysis and high-throughput data integration for actionable insights. The academic value of this review lies in synthesizing the latest technological and analytical innovations in obesity research. By providing a comprehensive overview, it aims to guide future studies and foster the development of targeted, data-driven strategies in obesity management.</p>\",\"PeriodicalId\":94133,\"journal\":{\"name\":\"MedComm\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70169\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

生物标志物在疾病的检测和管理中发挥着关键作用,包括肥胖——一种具有复杂生物学基础的日益严重的全球健康危机。肥胖的多面性,加上社会经济差异,强调了对精确诊断和治疗方法的迫切需要。生物科学的最新进展,包括下一代测序、多组学分析、高分辨率成像和智能传感器,已经彻底改变了数据生成。然而,有效利用这些数据丰富的技术来识别和验证肥胖相关的生物标志物仍然是一个重大挑战。这篇综述通过强调机器学习(ML)在肥胖研究中的潜力来弥补这一差距。具体来说,它探讨了机器学习技术如何处理复杂的数据集,以增强生物标志物的发现和验证。此外,它还研究了了解肥胖机制、评估风险因素和优化治疗策略的先进技术的整合。详细讨论了机器学习在多组学分析和高通量数据集成中的应用,以获得可操作的见解。这篇综述的学术价值在于综合了肥胖症研究中最新的技术和分析创新。通过提供全面的概述,它旨在指导未来的研究,并促进肥胖管理中有针对性的数据驱动策略的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obesity Biomarkers: Exploring Factors, Ramification, Machine Learning, and AI-Unveiling Insights in Health Research

Biomarkers play a pivotal role in the detection and management of diseases, including obesity—a growing global health crisis with complex biological underpinnings. The multifaceted nature of obesity, coupled with socioeconomic disparities, underscores the urgent need for precise diagnostic and therapeutic approaches. Recent advances in biosciences, including next-generation sequencing, multi-omics analysis, high-resolution imaging, and smart sensors, have revolutionized data generation. However, effectively leveraging these data-rich technologies to identify and validate obesity-related biomarkers remains a significant challenge. This review bridges this gap by highlighting the potential of machine learning (ML) in obesity research. Specifically, it explores how ML techniques can process complex data sets to enhance the discovery and validation of biomarkers. Additionally, it examines the integration of advanced technologies for understanding obesity mechanisms, assessing risk factors, and optimizing treatment strategies. A detailed discussion is provided on the applications of ML in multi-omics analysis and high-throughput data integration for actionable insights. The academic value of this review lies in synthesizing the latest technological and analytical innovations in obesity research. By providing a comprehensive overview, it aims to guide future studies and foster the development of targeted, data-driven strategies in obesity management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信