{"title":"微水凝胶成型辅助制备用于动态抗癌药物测试的pdm微流控浓度梯度发生器","authors":"Dhruba Dhar, Jyotirmoy Chatterjee and Soumen Das","doi":"10.1039/D5RA02192H","DOIUrl":null,"url":null,"abstract":"<p >Traditional drug testing <em>via</em> polystyrene or glass-based cell culture platforms exposes cells to static drug doses and mechanically rigid environments [stiffness in gigapascals (GPa)], which do not accurately replicate physiological conditions. To address these limitations, we developed a polydimethylsiloxane (PDMS)-based microfluidic concentration gradient generator (μCGG) with six integrated cell culture chambers, using a cost-effective and frugal micro-hydrogel molding-assisted technique that eliminates the need for cleanroom infrastructure, specialized equipment, or advanced expertise. This platform facilitates dynamic drug exposure to cells cultured in chambers with flexible PDMS bases [stiffness in kilopascal (kPa) range], providing a scalable and accessible approach for drug dose–response analysis under physiologically relevant conditions, thereby improving accuracy. μCGG utilized a pressure-driven flow design that repeatedly split, mixed, and recombined fluid streams owing to the presence of the mesh-like geometry of the microchannels. This generated a stable and predictable drug concentration gradient across six outlet chambers, as validated through COMSOL simulations, fluorescence microscopy, and UV-Vis spectroscopy using 5-fluorouracil (5-Fu) as a model drug. MDA-MB-231 breast cancer cells were then cultured in the outlet chambers and exposed to six distinct dynamically generated concentrations of 5-Fu. Cellular viability assessed <em>via</em> live/dead assays yielded an IC<small><sub>50</sub></small> value of 41 ± 4 μM, closely matching the results from conventional multiwell plates using manually pipetted gradients under static conditions (IC<small><sub>50</sub></small>: 36 ± 3 μM). Additional validation was carried out using immunocytochemistry and flow cytometry to assess apoptotic markers and treatment responses. Overall, our study presents a simple, frugal, and scalable microfluidic platform that addresses the major limitations of traditional drug testing platforms by incorporating dynamic chemical gradients, physiologically relevant mechanical environments, and low-barrier fabrication methods, paving its way for broader adoption in preclinical drug evaluation and dose–response assays.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 26","pages":" 21026-21035"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra02192h?page=search","citationCount":"0","resultStr":"{\"title\":\"Micro-hydrogel molding-assisted fabrication of a PDMS-based microfluidic concentration-gradient generator for dynamic anticancer drug testing†\",\"authors\":\"Dhruba Dhar, Jyotirmoy Chatterjee and Soumen Das\",\"doi\":\"10.1039/D5RA02192H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Traditional drug testing <em>via</em> polystyrene or glass-based cell culture platforms exposes cells to static drug doses and mechanically rigid environments [stiffness in gigapascals (GPa)], which do not accurately replicate physiological conditions. To address these limitations, we developed a polydimethylsiloxane (PDMS)-based microfluidic concentration gradient generator (μCGG) with six integrated cell culture chambers, using a cost-effective and frugal micro-hydrogel molding-assisted technique that eliminates the need for cleanroom infrastructure, specialized equipment, or advanced expertise. This platform facilitates dynamic drug exposure to cells cultured in chambers with flexible PDMS bases [stiffness in kilopascal (kPa) range], providing a scalable and accessible approach for drug dose–response analysis under physiologically relevant conditions, thereby improving accuracy. μCGG utilized a pressure-driven flow design that repeatedly split, mixed, and recombined fluid streams owing to the presence of the mesh-like geometry of the microchannels. This generated a stable and predictable drug concentration gradient across six outlet chambers, as validated through COMSOL simulations, fluorescence microscopy, and UV-Vis spectroscopy using 5-fluorouracil (5-Fu) as a model drug. MDA-MB-231 breast cancer cells were then cultured in the outlet chambers and exposed to six distinct dynamically generated concentrations of 5-Fu. Cellular viability assessed <em>via</em> live/dead assays yielded an IC<small><sub>50</sub></small> value of 41 ± 4 μM, closely matching the results from conventional multiwell plates using manually pipetted gradients under static conditions (IC<small><sub>50</sub></small>: 36 ± 3 μM). Additional validation was carried out using immunocytochemistry and flow cytometry to assess apoptotic markers and treatment responses. Overall, our study presents a simple, frugal, and scalable microfluidic platform that addresses the major limitations of traditional drug testing platforms by incorporating dynamic chemical gradients, physiologically relevant mechanical environments, and low-barrier fabrication methods, paving its way for broader adoption in preclinical drug evaluation and dose–response assays.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 26\",\"pages\":\" 21026-21035\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra02192h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02192h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02192h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Micro-hydrogel molding-assisted fabrication of a PDMS-based microfluidic concentration-gradient generator for dynamic anticancer drug testing†
Traditional drug testing via polystyrene or glass-based cell culture platforms exposes cells to static drug doses and mechanically rigid environments [stiffness in gigapascals (GPa)], which do not accurately replicate physiological conditions. To address these limitations, we developed a polydimethylsiloxane (PDMS)-based microfluidic concentration gradient generator (μCGG) with six integrated cell culture chambers, using a cost-effective and frugal micro-hydrogel molding-assisted technique that eliminates the need for cleanroom infrastructure, specialized equipment, or advanced expertise. This platform facilitates dynamic drug exposure to cells cultured in chambers with flexible PDMS bases [stiffness in kilopascal (kPa) range], providing a scalable and accessible approach for drug dose–response analysis under physiologically relevant conditions, thereby improving accuracy. μCGG utilized a pressure-driven flow design that repeatedly split, mixed, and recombined fluid streams owing to the presence of the mesh-like geometry of the microchannels. This generated a stable and predictable drug concentration gradient across six outlet chambers, as validated through COMSOL simulations, fluorescence microscopy, and UV-Vis spectroscopy using 5-fluorouracil (5-Fu) as a model drug. MDA-MB-231 breast cancer cells were then cultured in the outlet chambers and exposed to six distinct dynamically generated concentrations of 5-Fu. Cellular viability assessed via live/dead assays yielded an IC50 value of 41 ± 4 μM, closely matching the results from conventional multiwell plates using manually pipetted gradients under static conditions (IC50: 36 ± 3 μM). Additional validation was carried out using immunocytochemistry and flow cytometry to assess apoptotic markers and treatment responses. Overall, our study presents a simple, frugal, and scalable microfluidic platform that addresses the major limitations of traditional drug testing platforms by incorporating dynamic chemical gradients, physiologically relevant mechanical environments, and low-barrier fabrication methods, paving its way for broader adoption in preclinical drug evaluation and dose–response assays.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.